Mental Workload Estimation Using EEG

Vishal Pandey, Dhirendra Kumar Choudhary, Vinita Verma, Greeshma Sharma, Ram Singh, Sushil Chandra
{"title":"Mental Workload Estimation Using EEG","authors":"Vishal Pandey, Dhirendra Kumar Choudhary, Vinita Verma, Greeshma Sharma, Ram Singh, Sushil Chandra","doi":"10.1109/ICRCICN50933.2020.9296150","DOIUrl":null,"url":null,"abstract":"Mental workload contributes considerably to the outcome or the performance of any task. The concern of human workload increases during a human-machine collaboration task or in a multitasking environment. This paper presents a comparative study of machine learning algorithms used to estimate workload using Electroencephalography (EEG) data. An open-access EEG dataset acquired during a “simultaneous capacity (SIMKAP) experiment” and “no task” is used to create and validate models for binary classification of workload as present and absent respectively. The paper presents an implementation of various classification models that use EEG data to predict the workload. In this paper, implementation for KNN classifier (57.3%), Random Forest classifier (57.19%), MLP network classifier (58.2%), CNN+ LSTM network classifier (58.68%), and LSTM network classifier (61.08%) has been reported. The paper can be further extended to study operator workload in real-time using a brain-computer interface paradigm for any kind of task in a real-world application. The workload classification can be further used in human-machine tasks to decide task allocation between the system to achieve optimal performance in a complex critical system.","PeriodicalId":138966,"journal":{"name":"2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Fifth International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN50933.2020.9296150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Mental workload contributes considerably to the outcome or the performance of any task. The concern of human workload increases during a human-machine collaboration task or in a multitasking environment. This paper presents a comparative study of machine learning algorithms used to estimate workload using Electroencephalography (EEG) data. An open-access EEG dataset acquired during a “simultaneous capacity (SIMKAP) experiment” and “no task” is used to create and validate models for binary classification of workload as present and absent respectively. The paper presents an implementation of various classification models that use EEG data to predict the workload. In this paper, implementation for KNN classifier (57.3%), Random Forest classifier (57.19%), MLP network classifier (58.2%), CNN+ LSTM network classifier (58.68%), and LSTM network classifier (61.08%) has been reported. The paper can be further extended to study operator workload in real-time using a brain-computer interface paradigm for any kind of task in a real-world application. The workload classification can be further used in human-machine tasks to decide task allocation between the system to achieve optimal performance in a complex critical system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脑电图的脑力负荷估计
精神负荷对任何任务的结果或表现都有很大的影响。在人机协作任务或多任务环境中,对人工工作负载的关注会增加。本文介绍了一种机器学习算法的比较研究,用于使用脑电图(EEG)数据估计工作量。在“同步容量(SIMKAP)实验”和“无任务”期间获得的开放访问EEG数据集分别用于创建和验证工作负载存在和缺席的二元分类模型。本文介绍了利用脑电数据预测工作负荷的各种分类模型的实现。本文报道了KNN分类器(57.3%)、Random Forest分类器(57.19%)、MLP网络分类器(58.2%)、CNN+ LSTM网络分类器(58.68%)和LSTM网络分类器(61.08%)的实现。本文可以进一步扩展到在实际应用中使用脑机接口范式实时研究操作员工作量。在复杂的关键系统中,工作负载分类可以进一步应用于人机任务,决定系统之间的任务分配,以达到最优性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Twitter Hate Speech Detection using Stacked Weighted Ensemble (SWE) Model Automatic Traffic Accident Detection System Using ResNet and SVM A Multilingual Decision Support System for early detection of Diabetes using Machine Learning approach: Case study for Rural Indian people A Study and Analysis on Various Types of Agricultural Drones and its Applications Resiliency Analysis of ONOS and Opendaylight SDN Controllers Against Switch and Link Failures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1