Towards subspace clustering on dynamic data: an incremental version of PreDeCon

H. Kriegel, Peer Kröger, Eirini Ntoutsi, A. Zimek
{"title":"Towards subspace clustering on dynamic data: an incremental version of PreDeCon","authors":"H. Kriegel, Peer Kröger, Eirini Ntoutsi, A. Zimek","doi":"10.1145/1833280.1833285","DOIUrl":null,"url":null,"abstract":"Todays data are high dimensional and dynamic, thus clustering over such kind of data is rather complicated. To deal with the high dimensionality problem, the subspace clustering research area has lately emerged that aims at finding clusters in subspaces of the original feature space. So far, the subspace clustering methods are mainly static and thus, cannot address the dynamic nature of modern data. In this paper, we propose an incremental version of the density based projected clustering algorithm PreDeCon, called incPreDeCon. The proposed algorithm efficiently updates only those subspace clusters that might be affected due to the population update.","PeriodicalId":383372,"journal":{"name":"StreamKDD '10","volume":"221 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"StreamKDD '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1833280.1833285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Todays data are high dimensional and dynamic, thus clustering over such kind of data is rather complicated. To deal with the high dimensionality problem, the subspace clustering research area has lately emerged that aims at finding clusters in subspaces of the original feature space. So far, the subspace clustering methods are mainly static and thus, cannot address the dynamic nature of modern data. In this paper, we propose an incremental version of the density based projected clustering algorithm PreDeCon, called incPreDeCon. The proposed algorithm efficiently updates only those subspace clusters that might be affected due to the population update.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态数据上的子空间聚类:一个增量版本的前辈
如今的数据是高维的、动态的,因此在这类数据上聚类是相当复杂的。为了解决高维问题,最近出现了子空间聚类研究领域,其目的是在原始特征空间的子空间中寻找聚类。到目前为止,子空间聚类方法主要是静态的,因此不能解决现代数据的动态性。在本文中,我们提出了基于密度的投影聚类算法的增量版本,称为incpredecessor。该算法只对可能受到种群更新影响的子空间聚类进行有效更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fully decentralized computation of aggregates over data streams CALDS: context-aware learning from data streams Towards subspace clustering on dynamic data: an incremental version of PreDeCon Research issues in mining multiple data streams Conformal prediction for distribution-independent anomaly detection in streaming vessel data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1