T. Aalto, M. Harjanne, S. Ylinen, M. Kapulainen, T. Vehmas, M. Cherchi, C. Neumeyr, M. Ortsiefer, A. Malacarne
{"title":"Multi-wavelength transceiver integration on SOI for high-performance computing system applications","authors":"T. Aalto, M. Harjanne, S. Ylinen, M. Kapulainen, T. Vehmas, M. Cherchi, C. Neumeyr, M. Ortsiefer, A. Malacarne","doi":"10.1117/12.2079682","DOIUrl":null,"url":null,"abstract":"We present a vision for transceiver integration on a 3 μm SOI waveguide platform for systems scalable to Pb/s. We also present experimental results from the first building blocks developed in the EU-funded RAPIDO project. At 1.3 μm wavelength 80 Gb/s per wavelength is to be achieved using hybrid integration of III-V optoelectronics on SOI. Goals include athermal operation, low-loss I/O coupling, advanced modulation formats and packet switching. An example of the design results is an interposer chip that consists of 12 μm thick SOI waveguides locally tapered down to 3 μm to provide low-loss coupling between an optical single-mode fiber array and the 3 μm SOI chip. First example of experimental results is a 4x4 cyclic AWGs with 5 nm channel spacing, 0.4 dB/facet fiber coupling loss, 3.5 dB center-tocenter loss, and -23 dB adjacent channel crosstalk in 3.5x1.5 mm2 footprint. The second example result is a new VCSEL design that was demonstrated to have up to 40 Gb/s operation at 1.55 μm.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Optoelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2079682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We present a vision for transceiver integration on a 3 μm SOI waveguide platform for systems scalable to Pb/s. We also present experimental results from the first building blocks developed in the EU-funded RAPIDO project. At 1.3 μm wavelength 80 Gb/s per wavelength is to be achieved using hybrid integration of III-V optoelectronics on SOI. Goals include athermal operation, low-loss I/O coupling, advanced modulation formats and packet switching. An example of the design results is an interposer chip that consists of 12 μm thick SOI waveguides locally tapered down to 3 μm to provide low-loss coupling between an optical single-mode fiber array and the 3 μm SOI chip. First example of experimental results is a 4x4 cyclic AWGs with 5 nm channel spacing, 0.4 dB/facet fiber coupling loss, 3.5 dB center-tocenter loss, and -23 dB adjacent channel crosstalk in 3.5x1.5 mm2 footprint. The second example result is a new VCSEL design that was demonstrated to have up to 40 Gb/s operation at 1.55 μm.