Frameworks for GPU Accelerators: A comprehensive evaluation using 2D/3D image registration

Richard Membarth, Frank Hannig, J. Teich, M. Körner, Wieland Eckert
{"title":"Frameworks for GPU Accelerators: A comprehensive evaluation using 2D/3D image registration","authors":"Richard Membarth, Frank Hannig, J. Teich, M. Körner, Wieland Eckert","doi":"10.1109/SASP.2011.5941083","DOIUrl":null,"url":null,"abstract":"In the last decade, there has been a dramatic growth in research and development of massively parallel many-core architectures like graphics hardware, both in academia and industry. This changed also the way programs are written in order to leverage the processing power of a multitude of cores on the same hardware. In the beginning, programmers had to use special graphics programming interfaces to express general purpose computations on graphics hardware. Today, several frameworks exist to relieve the programmer from such tasks. In this paper, we present five frameworks for parallelization on GPU Accelerators, namely RapidMind, PGI Accelerator, HMPP Workbench, OpenCL, and CUDA. To evaluate these frameworks, a real world application from medical imaging is investigated, the 2D/3D image registration.","PeriodicalId":375788,"journal":{"name":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 9th Symposium on Application Specific Processors (SASP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SASP.2011.5941083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In the last decade, there has been a dramatic growth in research and development of massively parallel many-core architectures like graphics hardware, both in academia and industry. This changed also the way programs are written in order to leverage the processing power of a multitude of cores on the same hardware. In the beginning, programmers had to use special graphics programming interfaces to express general purpose computations on graphics hardware. Today, several frameworks exist to relieve the programmer from such tasks. In this paper, we present five frameworks for parallelization on GPU Accelerators, namely RapidMind, PGI Accelerator, HMPP Workbench, OpenCL, and CUDA. To evaluate these frameworks, a real world application from medical imaging is investigated, the 2D/3D image registration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GPU加速器框架:使用2D/3D图像配准的综合评估
在过去的十年中,学术界和工业界对大规模并行多核架构(如图形硬件)的研究和开发都有了显著的增长。这也改变了程序的编写方式,以便在同一硬件上利用多个核心的处理能力。一开始,程序员必须使用特殊的图形编程接口来表达图形硬件上的通用计算。今天,有几个框架可以将程序员从这些任务中解脱出来。在本文中,我们提出了五个GPU加速器上的并行化框架,即RapidMind, PGI Accelerator, HMPP Workbench, OpenCL和CUDA。为了评估这些框架,研究了医学成像的实际应用,即二维/三维图像配准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
TARCAD: A template architecture for reconfigurable accelerator designs USHA: Unified software and hardware architecture for video decoding Frameworks for GPU Accelerators: A comprehensive evaluation using 2D/3D image registration System integration of Elliptic Curve Cryptography on an OMAP platform A hardware acceleration technique for gradient descent and conjugate gradient
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1