Performance Analysis of Hyperspectral Supervised Target Detection Algorithms

C. S. Shibi, R. Gayathri
{"title":"Performance Analysis of Hyperspectral Supervised Target Detection Algorithms","authors":"C. S. Shibi, R. Gayathri","doi":"10.1109/ICONSTEM.2019.8918790","DOIUrl":null,"url":null,"abstract":"Hyperspectral detection of manmade or natural targets is an emerging area of research over past two decades. This paper focus on the target detection algorithms which utilizes structured background and their performance is analyzed using established statistical techniques. We have considered supervised algorithms such as Adaptive Matched Subspace Detector (AMSD), Orthogonal Subspace Projection (OSP) and Hybrid Structured Detector (HSD). We have used Automatic Target Generation Process (ATGP) to estimate the background endmembers. This paper presents a detailed analysis of structured target detection algorithms and the performance of the algorithms is evaluated using the real hyperspectral HYDICE Urban image.","PeriodicalId":164463,"journal":{"name":"2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Fifth International Conference on Science Technology Engineering and Mathematics (ICONSTEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONSTEM.2019.8918790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Hyperspectral detection of manmade or natural targets is an emerging area of research over past two decades. This paper focus on the target detection algorithms which utilizes structured background and their performance is analyzed using established statistical techniques. We have considered supervised algorithms such as Adaptive Matched Subspace Detector (AMSD), Orthogonal Subspace Projection (OSP) and Hybrid Structured Detector (HSD). We have used Automatic Target Generation Process (ATGP) to estimate the background endmembers. This paper presents a detailed analysis of structured target detection algorithms and the performance of the algorithms is evaluated using the real hyperspectral HYDICE Urban image.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高光谱监督目标检测算法的性能分析
人造或自然目标的高光谱探测是近二十年来一个新兴的研究领域。本文重点研究了利用结构化背景的目标检测算法,并利用已有的统计技术对其性能进行了分析。我们考虑了自适应匹配子空间检测器(AMSD)、正交子空间投影(OSP)和混合结构检测器(HSD)等监督算法。我们使用了自动目标生成过程(ATGP)来估计背景端元。本文对结构化目标检测算法进行了详细的分析,并利用真实高光谱HYDICE城市图像对算法的性能进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lively Contour Facets for Red Lesion Recognition Analysis of Different Speed Control Techniques for A Six-Phase Asymmetrical Induction Motor Drive Multi Inteligent Traffic Light Optimization techniques by appling Modified Component Analysis Algorithm Identification of Land Document Duplication and Black Money Transaction Using Big Data Analytics An Implementation of Energy Demand Forecast using J48 and Simple K Means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1