{"title":"Salient Face Prediction without Bells and Whistles","authors":"","doi":"10.1109/DICTA56598.2022.10034571","DOIUrl":null,"url":null,"abstract":"Salient face prediction in multiple-face videos is a fundamental task in machine vision. It finds usage in various applications like video editing and human-machine interactions. The field has seen significant progress in recent years, backed by large datasets comprising specifically of multi-face videos. As the first contribution, we present promise in a visual-only baseline, achieving state-of-the-art results for salient face prediction. Our work motivates reconsideration towards sophisticated multimodal, multi-stream architectures. We further show that a simple upstream task like active speaker detection can give a reasonable baseline and match prior tailored models for detecting salient faces. Moreover, we bring to light the inconsistencies in evaluation strategies, highlighting a need for standardization. We propose using a ranking-based evaluation for the task. Overall, our work motivates a fundamental course correction before re-initiating the search for novel architectures and frameworks.","PeriodicalId":159377,"journal":{"name":"2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA56598.2022.10034571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Salient face prediction in multiple-face videos is a fundamental task in machine vision. It finds usage in various applications like video editing and human-machine interactions. The field has seen significant progress in recent years, backed by large datasets comprising specifically of multi-face videos. As the first contribution, we present promise in a visual-only baseline, achieving state-of-the-art results for salient face prediction. Our work motivates reconsideration towards sophisticated multimodal, multi-stream architectures. We further show that a simple upstream task like active speaker detection can give a reasonable baseline and match prior tailored models for detecting salient faces. Moreover, we bring to light the inconsistencies in evaluation strategies, highlighting a need for standardization. We propose using a ranking-based evaluation for the task. Overall, our work motivates a fundamental course correction before re-initiating the search for novel architectures and frameworks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突出的面孔预测没有铃铛和口哨
多人脸视频中的显著性人脸预测是机器视觉中的一项基本任务。它在视频编辑和人机交互等各种应用中都有应用。近年来,该领域取得了重大进展,特别是由多面视频组成的大型数据集。作为第一个贡献,我们提出了一个只有视觉基线的承诺,实现了最先进的显著面部预测结果。我们的工作促使我们重新思考复杂的多模式、多流架构。我们进一步表明,一个简单的上游任务,如主动说话人检测,可以提供一个合理的基线,并匹配先前定制的模型来检测显著面。此外,我们揭示了评估策略的不一致性,强调了标准化的必要性。我们建议对任务使用基于排名的评估。总的来说,我们的工作在重新开始寻找新的体系结构和框架之前激发了一个基本的过程修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FootSeg: Automatic Anatomical Segmentation of Foot Bones from Weight-Bearing Cone Beam CT Scans KENGIC: KEyword-driven and N-Gram Graph based Image Captioning Swin-ResUNet: A Swin-Topology Module for Road Extraction from Remote Sensing Images A Multi-Granularity Feature Fusion Model for Pedestrian Attribute Recognition Disentangling Convolutional Neural Network towards an explainable Vehicle Classifier
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1