Semi-Automatic Cell Segmentation from Noisy Image Data for Quantification of Microtubule Organization on Single Cell Level

B. Möller, K. Bürstenbinder
{"title":"Semi-Automatic Cell Segmentation from Noisy Image Data for Quantification of Microtubule Organization on Single Cell Level","authors":"B. Möller, K. Bürstenbinder","doi":"10.1109/ISBI.2019.8759145","DOIUrl":null,"url":null,"abstract":"The structure of the microtubule cytoskeleton provides valuable information related to morphogenesis of cells. The cytoskeleton organizes into diverse patterns that vary in cells of different types and tissues, but also within a single tissue. To assess differences in cytoskeleton organization methods are needed that quantify cytoskeleton patterns within a complete cell and which are suitable for large data sets. A major bottleneck in most approaches, however, is a lack of techniques for automatic extraction of cell contours. Here, we present a semi-automatic pipeline for cell segmentation and quantification of microtubule organization. Automatic methods are applied to extract major parts of the contours and a handy image editor is provided to manually add missing information efficiently. Experimental results prove that our approach yields high-quality contour data with minimal user intervention and serves a suitable basis for subsequent quantitative studies.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The structure of the microtubule cytoskeleton provides valuable information related to morphogenesis of cells. The cytoskeleton organizes into diverse patterns that vary in cells of different types and tissues, but also within a single tissue. To assess differences in cytoskeleton organization methods are needed that quantify cytoskeleton patterns within a complete cell and which are suitable for large data sets. A major bottleneck in most approaches, however, is a lack of techniques for automatic extraction of cell contours. Here, we present a semi-automatic pipeline for cell segmentation and quantification of microtubule organization. Automatic methods are applied to extract major parts of the contours and a handy image editor is provided to manually add missing information efficiently. Experimental results prove that our approach yields high-quality contour data with minimal user intervention and serves a suitable basis for subsequent quantitative studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于噪声图像数据的半自动细胞分割,用于单细胞水平的微管组织定量
微管细胞骨架的结构提供了与细胞形态发生有关的有价值的信息。细胞骨架在不同类型的细胞和组织中组织成不同的模式,但在单个组织中也是如此。为了评估细胞骨架组织的差异,需要量化完整细胞内的细胞骨架模式的方法,并且适合于大型数据集。然而,大多数方法的主要瓶颈是缺乏自动提取细胞轮廓的技术。在这里,我们提出了一个半自动管道细胞分割和微管组织的定量。采用自动方法提取轮廓的主要部分,并提供一个方便的图像编辑器,手动有效地添加缺失信息。实验结果证明,我们的方法以最少的用户干预产生高质量的轮廓数据,为后续的定量研究提供了合适的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1