Variable impedance walking using Time-Varying Lyapunov Stability Margins

Emmanouil Spyrakos-Papastavridis, P. Childs, N. Tsagarakis
{"title":"Variable impedance walking using Time-Varying Lyapunov Stability Margins","authors":"Emmanouil Spyrakos-Papastavridis, P. Childs, N. Tsagarakis","doi":"10.1109/HUMANOIDS.2017.8246892","DOIUrl":null,"url":null,"abstract":"This paper introduces novel methods for a humanoid robot's online balance monitoring, as well as for the tuning of its impedance parameters, based on Time-Varying Lyapunov Stability Margins (TVLSMs). It distinguishes itself from previous works by considering TVLSMs whose values evolve in real-time, in accordance with the references supplied to a trajectory tracking controller, as opposed to the previously-considered static LSMs that revolve around the use of set-point regulators. As a result, an analytical relationship between the system's energy and its Centre-of-Pressure (CoP) is derived, providing a means of predicting the robot's balancing behaviour based on the evolution of the closed-loop system's actual and critical, energy values. An appropriate manipulation of this expression facilitates a real-time tuning of the active stiffness gains, which may be viewed as a process of constraining the robot's energy to residing within a ‘safe region’ of operation. Walking experiments performed using the COmpliant huMANoid (COMAN), reveal the proposed technique's accuracy in terms of predicting stable states, in addition to its capability of enabling an automated real-time tuning of a robot's impedance levels. The proposed strategy has permitted the stable replication of a wide range of joint impedance values, which is imperative for ground interaction during walking.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper introduces novel methods for a humanoid robot's online balance monitoring, as well as for the tuning of its impedance parameters, based on Time-Varying Lyapunov Stability Margins (TVLSMs). It distinguishes itself from previous works by considering TVLSMs whose values evolve in real-time, in accordance with the references supplied to a trajectory tracking controller, as opposed to the previously-considered static LSMs that revolve around the use of set-point regulators. As a result, an analytical relationship between the system's energy and its Centre-of-Pressure (CoP) is derived, providing a means of predicting the robot's balancing behaviour based on the evolution of the closed-loop system's actual and critical, energy values. An appropriate manipulation of this expression facilitates a real-time tuning of the active stiffness gains, which may be viewed as a process of constraining the robot's energy to residing within a ‘safe region’ of operation. Walking experiments performed using the COmpliant huMANoid (COMAN), reveal the proposed technique's accuracy in terms of predicting stable states, in addition to its capability of enabling an automated real-time tuning of a robot's impedance levels. The proposed strategy has permitted the stable replication of a wide range of joint impedance values, which is imperative for ground interaction during walking.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
时变Lyapunov稳定性裕度的变阻抗行走
本文介绍了一种基于时变李雅普诺夫稳定裕度(TVLSMs)的仿人机器人在线平衡监测和阻抗参数整定的新方法。它与以前的工作不同,它考虑了tvlsm,其值根据提供给轨迹跟踪控制器的参考实时演变,而不是以前考虑的静态lsm,围绕着使用设定点调节器。结果,导出了系统能量与其压力中心(CoP)之间的分析关系,提供了一种基于闭环系统实际和临界能量值的演变预测机器人平衡行为的方法。对该表达式的适当操作有助于实时调整主动刚度增益,这可以被视为将机器人的能量限制在操作的“安全区域”内的过程。使用柔性人形机器人(COMAN)进行的行走实验表明,除了能够自动实时调整机器人的阻抗水平外,所提出的技术在预测稳定状态方面的准确性也很高。所提出的策略允许大范围关节阻抗值的稳定复制,这对于行走期间的地面相互作用是必不可少的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stiffness evaluation of a tendon-driven robot with variable joint stiffness mechanisms Investigations of viscoelastic liquid cooled actuators applied for dynamic motion control of legged systems Tilt estimator for 3D non-rigid pendulum based on a tri-axial accelerometer and gyrometer Optimal and robust walking using intrinsic properties of a series-elastic robot Experimental evaluation of simple estimators for humanoid robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1