{"title":"Power loss reduction by chaotic based predator-prey brain storm optimization algorithm","authors":"K. Lenin","doi":"10.11591/IJAPE.V9.I3.PP218-222","DOIUrl":null,"url":null,"abstract":"In this paper chaotic predator-prey brain storm optimization (CPB) algorithm is proposed to solve optimal reactive power problem. In this work predator-prey brain storm optimization position cluster centers to perform as predators, consequently it will move towards better and better positions, while the remaining ideas perform as preys; hence get away from their adjacent predators. In the projected CPB algorithm chaotic theory has been applied in the modeling of the algorithm. In the proposed algorithm main properties of chaotic such as ergodicity and irregularity used to make the algorithm to jump out of the local optimum as well as to determine optimal parameters CPB algorithm has been tested in standard IEEE 57 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.","PeriodicalId":280098,"journal":{"name":"International Journal of Applied Power Engineering","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Power Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJAPE.V9.I3.PP218-222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper chaotic predator-prey brain storm optimization (CPB) algorithm is proposed to solve optimal reactive power problem. In this work predator-prey brain storm optimization position cluster centers to perform as predators, consequently it will move towards better and better positions, while the remaining ideas perform as preys; hence get away from their adjacent predators. In the projected CPB algorithm chaotic theory has been applied in the modeling of the algorithm. In the proposed algorithm main properties of chaotic such as ergodicity and irregularity used to make the algorithm to jump out of the local optimum as well as to determine optimal parameters CPB algorithm has been tested in standard IEEE 57 bus test system and simulation results show the projected algorithm reduced the real power loss considerably.