Identifying Political Topics in Social Media Messages: A Lexicon-Based Approach

Sam Jackson, Feifei Zhang, O. Boichak, Lauren Bryant, Yingya Li, Jeff J. Hemsley, Jennifer Stromer-Galley, Bryan C. Semaan, Nancy J. McCracken
{"title":"Identifying Political Topics in Social Media Messages: A Lexicon-Based Approach","authors":"Sam Jackson, Feifei Zhang, O. Boichak, Lauren Bryant, Yingya Li, Jeff J. Hemsley, Jennifer Stromer-Galley, Bryan C. Semaan, Nancy J. McCracken","doi":"10.1145/3097286.3097298","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a lexicon-based method for identifying political topics in social media messages. After discussing several critical shortcomings of unsupervised topic identification for this task, we describe the lexicon-based approach. We test our lexicon on candidate-generated campaign messages on Facebook and Twitter in the 2016 U.S. presidential election. The results show that this approach provides reliable results for eight of nine political topic categories. In closing, we describe steps to improve our approach and how it can be used for future research on political topics in social media messages.","PeriodicalId":130378,"journal":{"name":"Proceedings of the 8th International Conference on Social Media & Society","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th International Conference on Social Media & Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3097286.3097298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we introduce a lexicon-based method for identifying political topics in social media messages. After discussing several critical shortcomings of unsupervised topic identification for this task, we describe the lexicon-based approach. We test our lexicon on candidate-generated campaign messages on Facebook and Twitter in the 2016 U.S. presidential election. The results show that this approach provides reliable results for eight of nine political topic categories. In closing, we describe steps to improve our approach and how it can be used for future research on political topics in social media messages.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
识别社会媒体信息中的政治话题:基于词典的方法
在本文中,我们介绍了一种基于词典的方法来识别社交媒体消息中的政治话题。在讨论了用于此任务的无监督主题识别的几个关键缺点之后,我们描述了基于词典的方法。我们用2016年美国总统大选中候选人在Facebook和Twitter上发布的竞选信息来测试我们的词汇。结果表明,这种方法为9个政治主题类别中的8个提供了可靠的结果。最后,我们描述了改进我们方法的步骤,以及如何将其用于未来对社交媒体信息中政治主题的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Glyphexts (Glyphs + Text = Effect) as Information Divide: Screen Reader Impact on Interpreting Sentimentality in Online Social Media Review Posts How Celebrities Feed Tweeples with Personal and Promotional Tweets: Celebrity Twitter Use and Audience Engagement Strategic Temporality on Social Media During the General Election of the 2016 U.S. Presidential Campaign Introduction to the 2017 International Conference on Social Media and Society The Presentation of Selfie in Everyday Life: Considering the Relationship Between Social Media Design and User in the Online Actions and Interactions of Young People
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1