{"title":"Real-time Stereo Reconstruction Failure Detection and Correction using Deep Learning","authors":"Vlad-Cristian Miclea, L. Miclea, S. Nedevschi","doi":"10.1109/ITSC.2018.8569928","DOIUrl":null,"url":null,"abstract":"This paper introduces a stereo reconstruction method that besides producing accurate results in real-time, is capable to detect and conceal possible failures caused by one of the cameras. A classification of stereo camera sensor faults is initially introduced, the most common types of defects being highlighted. We next present a stereo camera failure detection method in which various additional checks are being introduced, with respect to the aforementioned error classification. Furthermore, we propose a novel error correction method based on CNNs (convolutional neural networks) that is capable of generating reliable disparity maps by using prior information provided by semantic segmentation in conjunction with the last available disparity. We highlight the efficiency of our approach by evaluating its performance in various driving scenarios and show that it produces accurate disparities on images from Kitti stereo and raw datasets while running in real-time on a regular GPU.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
This paper introduces a stereo reconstruction method that besides producing accurate results in real-time, is capable to detect and conceal possible failures caused by one of the cameras. A classification of stereo camera sensor faults is initially introduced, the most common types of defects being highlighted. We next present a stereo camera failure detection method in which various additional checks are being introduced, with respect to the aforementioned error classification. Furthermore, we propose a novel error correction method based on CNNs (convolutional neural networks) that is capable of generating reliable disparity maps by using prior information provided by semantic segmentation in conjunction with the last available disparity. We highlight the efficiency of our approach by evaluating its performance in various driving scenarios and show that it produces accurate disparities on images from Kitti stereo and raw datasets while running in real-time on a regular GPU.