Network traffic classification based on periodic behavior detection

Josef Koumar, T. Čejka
{"title":"Network traffic classification based on periodic behavior detection","authors":"Josef Koumar, T. Čejka","doi":"10.23919/CNSM55787.2022.9964556","DOIUrl":null,"url":null,"abstract":"Even though encryption hides the content of communication from network monitoring and security systems, this paper shows a feasible way to retrieve useful information about the observed traffic. The paper deals with detection of periodic behavioral patterns of the communication that can be detected using time series created from network traffic by autocorrelation function and Lomb-Scargle periodogram. The revealed characteristics of the periodic behavior can be further exploited to recognize particular applications. We have experimented with the created dataset of 61 classes, and trained a machine learning classifier based on XGBoost that performed the best in our experiments, reaching 90% F1-score.","PeriodicalId":232521,"journal":{"name":"2022 18th International Conference on Network and Service Management (CNSM)","volume":"1108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Network and Service Management (CNSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/CNSM55787.2022.9964556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Even though encryption hides the content of communication from network monitoring and security systems, this paper shows a feasible way to retrieve useful information about the observed traffic. The paper deals with detection of periodic behavioral patterns of the communication that can be detected using time series created from network traffic by autocorrelation function and Lomb-Scargle periodogram. The revealed characteristics of the periodic behavior can be further exploited to recognize particular applications. We have experimented with the created dataset of 61 classes, and trained a machine learning classifier based on XGBoost that performed the best in our experiments, reaching 90% F1-score.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于周期行为检测的网络流分类
尽管加密对网络监控和安全系统隐藏了通信内容,但本文提出了一种可行的方法来检索所观察流量的有用信息。本文研究了利用自相关函数和Lomb-Scargle周期图从网络流量中生成的时间序列来检测通信周期行为模式的方法。可以进一步利用所揭示的周期性行为的特征来识别特定的应用。我们对创建的61个类的数据集进行了实验,并训练了一个基于XGBoost的机器学习分类器,该分类器在我们的实验中表现最好,达到了90%的f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Function-as-a-Service Orchestration in Fog Computing Environments Intent-based Decentralized Orchestration for Green Energy-aware Provisioning of Fog-native Workflows HSFL: An Efficient Split Federated Learning Framework via Hierarchical Organization Network traffic classification based on periodic behavior detection VM Failure Prediction with Log Analysis using BERT-CNN Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1