Predicting Breast Cancer Outcome under Different Treatments by Feature Selection Approaches

H. Pham, L. Rueda, A. Ngom
{"title":"Predicting Breast Cancer Outcome under Different Treatments by Feature Selection Approaches","authors":"H. Pham, L. Rueda, A. Ngom","doi":"10.1145/3107411.3108226","DOIUrl":null,"url":null,"abstract":"Gene expression data have been used in many researches to help reveal the underlying mechanism of many diseases. In this study, we applied feature selection techniques on breast cancer patients in the METABRIC Study to predict whether patients will be disease free or not, under different treatments. Our models for prediction are of high performance, thus, the genes in those models might help reveal the mechanism of the disease, and these potential biomarkers can become targets for new therapies.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3108226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Gene expression data have been used in many researches to help reveal the underlying mechanism of many diseases. In this study, we applied feature selection techniques on breast cancer patients in the METABRIC Study to predict whether patients will be disease free or not, under different treatments. Our models for prediction are of high performance, thus, the genes in those models might help reveal the mechanism of the disease, and these potential biomarkers can become targets for new therapies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用特征选择方法预测不同治疗下乳腺癌的预后
基因表达数据已被用于许多研究,以帮助揭示许多疾病的潜在机制。在本研究中,我们将METABRIC研究中的特征选择技术应用于乳腺癌患者,以预测患者在不同治疗下是否无病。我们的预测模型是高性能的,因此,这些模型中的基因可能有助于揭示疾病的机制,这些潜在的生物标志物可以成为新疗法的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Free Text into MedDRA by Natural Language Processing: A Modular Approach in Designing and Evaluating Software Extensions Evolving Conformation Paths to Model Protein Structural Transitions Supervised Machine Learning Approaches Predict and Characterize Nanomaterial Exposures: MWCNT Markers in Lung Lavage Fluid. Geometry Analysis for Protein Secondary Structures Matching Problem Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1