A Mandarin lecture speech transcription system for speech summarization

R. Chan, J. Zhang, Pascale Fung, Lu Cao
{"title":"A Mandarin lecture speech transcription system for speech summarization","authors":"R. Chan, J. Zhang, Pascale Fung, Lu Cao","doi":"10.1109/ASRU.2007.4430157","DOIUrl":null,"url":null,"abstract":"This paper introduces our work on mandarin lecture speech transcription. In particular, we present our work on a small database, which contains only 16 hours of audio data and 0.16 M words of text data. A range of experiments have been done to improve the performances of the acoustic model and the language model, these include adapting the lecture speech data to the reading speech data for acoustic modeling and the use of lecture conference paper, power points and similar domain web data for language modeling. We also study the effects of automatic segmentation, unsupervised acoustic model adaptation and language model adaptation in our recognition system. By using a 3timesRT multiple passes decoding strategy, we obtain 70.3% accuracy performance in our final system. Finally, we apply our speech transcription system into a SVM summarizer and obtain a ROUGE-L F-measure of 66.5%.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper introduces our work on mandarin lecture speech transcription. In particular, we present our work on a small database, which contains only 16 hours of audio data and 0.16 M words of text data. A range of experiments have been done to improve the performances of the acoustic model and the language model, these include adapting the lecture speech data to the reading speech data for acoustic modeling and the use of lecture conference paper, power points and similar domain web data for language modeling. We also study the effects of automatic segmentation, unsupervised acoustic model adaptation and language model adaptation in our recognition system. By using a 3timesRT multiple passes decoding strategy, we obtain 70.3% accuracy performance in our final system. Finally, we apply our speech transcription system into a SVM summarizer and obtain a ROUGE-L F-measure of 66.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于语音摘要的普通话讲座语音转录系统
本文介绍了我们在普通话讲稿抄写方面的工作。特别地,我们在一个小型数据库上展示了我们的工作,该数据库仅包含16小时的音频数据和0.16 M个单词的文本数据。为了提高声学模型和语言模型的性能,我们进行了一系列的实验,包括将讲座语音数据与阅读语音数据进行声学建模,以及使用讲座会议论文、ppt和类似的领域web数据进行语言建模。我们还研究了自动分割、无监督声学模型自适应和语言模型自适应在我们的识别系统中的效果。通过使用3 timesrt多个经过解码策略,我们在最终系统性能获得70.3%的准确率。最后,我们将我们的语音转录系统应用到支持向量机摘要器中,得到了66.5%的ROUGE-L f测度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1