Predictive linear transforms for noise robust speech recognition

M. Gales, R. V. Dalen
{"title":"Predictive linear transforms for noise robust speech recognition","authors":"M. Gales, R. V. Dalen","doi":"10.1109/ASRU.2007.4430084","DOIUrl":null,"url":null,"abstract":"It is well known that the addition of background noise alters the correlations between the elements of, for example, the MFCC feature vector. However, standard model-based compensation techniques do not modify the feature-space in which the diagonal covariance matrix Gaussian mixture models are estimated. One solution to this problem, which yields good performance, is joint uncertainty decoding (JUD) with full transforms. Unfortunately, this results in a high computational cost during decoding. This paper contrasts two approaches to approximating full JUD while lowering the computational cost. Both use predictive linear transforms to modify the feature-space: adaptation-based linear transforms, where the model parameters are restricted to be the same as the original clean system; and precision matrix modelling approaches, in particular semi-tied covariance matrices. These predictive transforms are estimated using statistics derived from the full JUD transforms rather than noisy data. The schemes are evaluated on AURORA 2 and a noise-corrupted resource management task.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

It is well known that the addition of background noise alters the correlations between the elements of, for example, the MFCC feature vector. However, standard model-based compensation techniques do not modify the feature-space in which the diagonal covariance matrix Gaussian mixture models are estimated. One solution to this problem, which yields good performance, is joint uncertainty decoding (JUD) with full transforms. Unfortunately, this results in a high computational cost during decoding. This paper contrasts two approaches to approximating full JUD while lowering the computational cost. Both use predictive linear transforms to modify the feature-space: adaptation-based linear transforms, where the model parameters are restricted to be the same as the original clean system; and precision matrix modelling approaches, in particular semi-tied covariance matrices. These predictive transforms are estimated using statistics derived from the full JUD transforms rather than noisy data. The schemes are evaluated on AURORA 2 and a noise-corrupted resource management task.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于预测线性变换的噪声鲁棒语音识别
众所周知,背景噪声的加入会改变元素之间的相关性,例如,MFCC特征向量。然而,基于标准模型的补偿技术并没有改变对角协方差矩阵高斯混合模型估计的特征空间。解决这一问题的一种方法是采用全变换的联合不确定性解码(JUD)。不幸的是,这导致解码期间的高计算成本。本文对比了两种近似全JUD的方法,同时降低了计算成本。两者都使用预测线性变换来修改特征空间:基于自适应的线性变换,其中模型参数被限制为与原始清洁系统相同;以及精确的矩阵建模方法,特别是半捆绑协方差矩阵。这些预测转换是使用来自完整的JUD转换而不是噪声数据的统计数据来估计的。在AURORA 2和一个受噪声干扰的资源管理任务上对这些方案进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive linear transforms for noise robust speech recognition Development of a phonetic system for large vocabulary Arabic speech recognition Error simulation for training statistical dialogue systems An enhanced minimum classification error learning framework for balancing insertion, deletion and substitution errors Monolingual and crosslingual comparison of tandem features derived from articulatory and phone MLPS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1