Model-based Analysis of Respiratory Mechanics and Parameters in Critically Ill Mechanically Ventilated Patients

Christopher Yew Shuen Ang, Y. Chiew, Xin Wang, M. Nor
{"title":"Model-based Analysis of Respiratory Mechanics and Parameters in Critically Ill Mechanically Ventilated Patients","authors":"Christopher Yew Shuen Ang, Y. Chiew, Xin Wang, M. Nor","doi":"10.1109/IECBES54088.2022.10079532","DOIUrl":null,"url":null,"abstract":"Mechanical ventilation (MV) parameters and other physiological parameters determined from mechanically ventilated respiratory failure patients can be used to estimate patient-centred outcomes. However, there is a lack of analysis of these ventilation parameters continuously to provide useful clinical insight into patients’ disease state, progression as well as evaluation of MV treatment management. This paper presents a model-based analysis on patient-specific respiratory mechanics and MV breath parameters for a clinical observational trial. This study includes 15 patients, with 24 hours of MV data analysed per patient. A total of 385,438 breaths were analysed for this patient cohort. Model-based identification of patient-specific respiratory mechanics yielded a median [interquartile range, IQR] Ers and Rrs of 28.66 cmH2 O/L [24.81-35.92] and 8.86 cmH2 O/L/s [6.11-12.78]. Out of 15 patients, 10 patients have less than 10% of MV parameters (VT, PPlat, PIP, driving pressure, PEEP and MP) falling into the safe ranges described by lung protective strategies and in literature. Analysis of patient arterial blood gas values (ABG) yielded a median PaCO2, PaO2 and pH of 38.0 mmHg [31.7-43.0], 90.2 mmHg [73.9-119.0], and 7.38 [7.32-7.42] respectively. Respiratory mechanics, parameters and haemodynamics are patient-specific and time-varying. Model-based methods enable continuous, concurrent, and real-time monitoring of breath parameters, aiding clinicians in titrating and providing an optimal balance between various ventilator settings while preventing patient harm.Clinical Relevance–Simultaneous and real-time analysis of patient-specific respiratory mechanics and parameters in this clinical observational trial show low compliance rates with respect to lung protective strategies in mechanical ventilation treatment.","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Mechanical ventilation (MV) parameters and other physiological parameters determined from mechanically ventilated respiratory failure patients can be used to estimate patient-centred outcomes. However, there is a lack of analysis of these ventilation parameters continuously to provide useful clinical insight into patients’ disease state, progression as well as evaluation of MV treatment management. This paper presents a model-based analysis on patient-specific respiratory mechanics and MV breath parameters for a clinical observational trial. This study includes 15 patients, with 24 hours of MV data analysed per patient. A total of 385,438 breaths were analysed for this patient cohort. Model-based identification of patient-specific respiratory mechanics yielded a median [interquartile range, IQR] Ers and Rrs of 28.66 cmH2 O/L [24.81-35.92] and 8.86 cmH2 O/L/s [6.11-12.78]. Out of 15 patients, 10 patients have less than 10% of MV parameters (VT, PPlat, PIP, driving pressure, PEEP and MP) falling into the safe ranges described by lung protective strategies and in literature. Analysis of patient arterial blood gas values (ABG) yielded a median PaCO2, PaO2 and pH of 38.0 mmHg [31.7-43.0], 90.2 mmHg [73.9-119.0], and 7.38 [7.32-7.42] respectively. Respiratory mechanics, parameters and haemodynamics are patient-specific and time-varying. Model-based methods enable continuous, concurrent, and real-time monitoring of breath parameters, aiding clinicians in titrating and providing an optimal balance between various ventilator settings while preventing patient harm.Clinical Relevance–Simultaneous and real-time analysis of patient-specific respiratory mechanics and parameters in this clinical observational trial show low compliance rates with respect to lung protective strategies in mechanical ventilation treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
危重机械通气患者呼吸力学及参数的模型分析
机械通气(MV)参数和从机械通气呼吸衰竭患者确定的其他生理参数可用于估计以患者为中心的结果。然而,缺乏对这些通气参数的持续分析,以提供有用的临床洞察患者的疾病状态,进展以及评估MV治疗管理。本文介绍了一项基于模型的临床观察试验的患者特异性呼吸力学和MV呼吸参数分析。本研究包括15例患者,分析每位患者24小时的MV数据。该患者队列共分析了385,438次呼吸。基于模型的患者特异性呼吸力学鉴定的中位数[四分位数范围,IQR] er和Rrs分别为28.66 cmH2 O/L[24.81-35.92]和8.86 cmH2 O/L/s[6.11-12.78]。15例患者中,10例患者的MV参数(VT、ppla、PIP、驱动压、PEEP和MP)在肺保护策略和文献中描述的安全范围内低于10%。分析患者动脉血气值(ABG)的中位PaCO2、PaO2和pH分别为38.0 mmHg[31.7-43.0]、90.2 mmHg[73.9-119.0]和7.38[7.32-7.42]。呼吸力学、参数和血流动力学是患者特有的和随时间变化的。基于模型的方法能够连续、并发和实时监测呼吸参数,帮助临床医生滴定,并在各种呼吸机设置之间提供最佳平衡,同时防止患者受到伤害。临床相关性:在这项临床观察性试验中,对患者特异性呼吸力学和参数的同步和实时分析显示,机械通气治疗中肺保护策略的依从性较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Connectivity Based Classification for Autism Spectrum Disorder Using Spearman’s Rank Correlation Vector-Quantized Zero-Delay Deep Autoencoders for the Compression of Electrical Stimulation Patterns of Cochlear Implants using STOI Depression Detection on Malay Dialects Using GPT-3 Mechanical Noise Affects Rambling and Trembling Trajectories During Quiet Standing Effect Of Shoe Cushioning Hardness to Running Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1