{"title":"System-on-Package MHMIC Milimeter-Wave Frequency Synthesizer for 60 GHz WPANs","authors":"B. Spokoinyi, R. Amaya, I. Haroun, J. Wight","doi":"10.1155/2012/906516","DOIUrl":null,"url":null,"abstract":"We present a low-cost millimeter-wave frequency synthesizer with ultralow phase noise, implemented using system-on-package (SoP) techniques for high-data-rate wireless personal area network (WPAN) systems operating in the unlicensed 60 GHz ISM band (57–64 GHz). The phase noise specification of the proposed frequency synthesizer is derived for a worst case scenario of an 802.11.3c system, which uses a 64-QAM 512-carrier-OFDM modulation, and a data rate of 5.775 Gbps. Our design approach adopts commercial-of-the-shelf (COTS) components integrated in a low-cost alumina-based miniature hybrid microwave integrated circuit (MHMIC) package. The proposed design approach reduces not only the system cost and time-to-market, but also enhances the system performance in comparison with system-on-chip (SoC) designs. The synthesizer has measured phase noise of −111.5 dBc/Hz at 1 MHz offset and integrated phase noise of 2.8° (simulated: 2.5°) measured at 57.6 GHz with output power of","PeriodicalId":232251,"journal":{"name":"International Journal of Microwave Science and Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Microwave Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/906516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a low-cost millimeter-wave frequency synthesizer with ultralow phase noise, implemented using system-on-package (SoP) techniques for high-data-rate wireless personal area network (WPAN) systems operating in the unlicensed 60 GHz ISM band (57–64 GHz). The phase noise specification of the proposed frequency synthesizer is derived for a worst case scenario of an 802.11.3c system, which uses a 64-QAM 512-carrier-OFDM modulation, and a data rate of 5.775 Gbps. Our design approach adopts commercial-of-the-shelf (COTS) components integrated in a low-cost alumina-based miniature hybrid microwave integrated circuit (MHMIC) package. The proposed design approach reduces not only the system cost and time-to-market, but also enhances the system performance in comparison with system-on-chip (SoC) designs. The synthesizer has measured phase noise of −111.5 dBc/Hz at 1 MHz offset and integrated phase noise of 2.8° (simulated: 2.5°) measured at 57.6 GHz with output power of