G. Imbrogno, S. Marlette, Alexandria M. Carolan, A. Udyawar, M. Gray
{"title":"Recent Operational Experience of Pressurized Water Reactor Safety Injection and Drain Line Cracking and Supporting Flaw Evaluations","authors":"G. Imbrogno, S. Marlette, Alexandria M. Carolan, A. Udyawar, M. Gray","doi":"10.1115/pvp2019-93945","DOIUrl":null,"url":null,"abstract":"\n A recent increase in operating experience (OE) related to pipe cracking in non-isolable auxiliary piping systems has been realized in the Pressurized Water Reactor (PWR) nuclear power industry. The majority of PWR auxiliary piping systems are comprised of welded stainless steel pipe and piping components. The susceptible piping systems are Class 1 pressure boundary and typically non-isolable from the primary loop. Since they are non-isolable, when a pipe crack or crack indication is identified, an emergent flaw evaluation and/or repair is required.\n Typically, the evaluations begin with an ASME Section XI IWB-3640 flaw evaluation to determine acceptability of the as-found flaw at the time of shutdown. Subsequent flaw evaluations are performed to demonstrate the possibility of continued operation of the piping component by leaving the flaw as-is without repair. The flaw tolerance evaluation considers the applicable piping geometry, materials, loadings, crack growth evaluations, and the detection capabilities of the non-destructive examination technique. If evaluation of the as-found indication does not produce acceptable results, then a repair/replacement activity per ASME Section XI is considered. Possible repair scenarios include replacement of the piping section or component, or structural weld overlay. The results of the flaw evaluations or repairs must ensure that the auxiliary piping system will continue to operate safely.\n This paper will discuss the recent experiences of two different piping systems (boron injection tank line and drain line) that experienced cracking, the potential causes for the cracking in the absence of evidence, and the ASME Code flaw evaluations and/or repairs performed to support continued operation of the plant.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2019-93945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A recent increase in operating experience (OE) related to pipe cracking in non-isolable auxiliary piping systems has been realized in the Pressurized Water Reactor (PWR) nuclear power industry. The majority of PWR auxiliary piping systems are comprised of welded stainless steel pipe and piping components. The susceptible piping systems are Class 1 pressure boundary and typically non-isolable from the primary loop. Since they are non-isolable, when a pipe crack or crack indication is identified, an emergent flaw evaluation and/or repair is required.
Typically, the evaluations begin with an ASME Section XI IWB-3640 flaw evaluation to determine acceptability of the as-found flaw at the time of shutdown. Subsequent flaw evaluations are performed to demonstrate the possibility of continued operation of the piping component by leaving the flaw as-is without repair. The flaw tolerance evaluation considers the applicable piping geometry, materials, loadings, crack growth evaluations, and the detection capabilities of the non-destructive examination technique. If evaluation of the as-found indication does not produce acceptable results, then a repair/replacement activity per ASME Section XI is considered. Possible repair scenarios include replacement of the piping section or component, or structural weld overlay. The results of the flaw evaluations or repairs must ensure that the auxiliary piping system will continue to operate safely.
This paper will discuss the recent experiences of two different piping systems (boron injection tank line and drain line) that experienced cracking, the potential causes for the cracking in the absence of evidence, and the ASME Code flaw evaluations and/or repairs performed to support continued operation of the plant.