Hypercube network fault tolerance: a probabilistic approach

Jianer Chen, Iyad A. Kanj, Guojun Wang
{"title":"Hypercube network fault tolerance: a probabilistic approach","authors":"Jianer Chen, Iyad A. Kanj, Guojun Wang","doi":"10.1109/ICPP.2002.1040860","DOIUrl":null,"url":null,"abstract":"Extensive experience has shown that hypercube networks are highly fault tolerant. What is frustrating is that it seems very difficult to properly formulate and formally prove this important fact, despite extensive research efforts in the past two decades. Most proposed fault tolerance models for hypercube networks are only able to characterize very rare extreme situations thus significantly underestimating the fault tolerance power of hypercube networks, while for more realistic fault tolerance models, the analysis becomes much more complicated. We develop new techniques to analyze a realistic fault tolerance model and derive lower bounds for the probability of hypercube network fault tolerance. Our results are both theoretically significant and practically important. Theoretically, our method offers very general and powerful techniques for formally proving lower bounds on the probability of network connectivity, while practically, our results provide formally proven and precisely given upper bounds on node failure probabilities for manufacturers to achieve a desired probability for network connectivity. Our techniques are also useful for analysis of the performance of routing algorithms.","PeriodicalId":393916,"journal":{"name":"Proceedings International Conference on Parallel Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.2002.1040860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

Extensive experience has shown that hypercube networks are highly fault tolerant. What is frustrating is that it seems very difficult to properly formulate and formally prove this important fact, despite extensive research efforts in the past two decades. Most proposed fault tolerance models for hypercube networks are only able to characterize very rare extreme situations thus significantly underestimating the fault tolerance power of hypercube networks, while for more realistic fault tolerance models, the analysis becomes much more complicated. We develop new techniques to analyze a realistic fault tolerance model and derive lower bounds for the probability of hypercube network fault tolerance. Our results are both theoretically significant and practically important. Theoretically, our method offers very general and powerful techniques for formally proving lower bounds on the probability of network connectivity, while practically, our results provide formally proven and precisely given upper bounds on node failure probabilities for manufacturers to achieve a desired probability for network connectivity. Our techniques are also useful for analysis of the performance of routing algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超立方体网络容错:一种概率方法
大量的经验表明,超立方体网络具有高度的容错性。令人沮丧的是,尽管在过去的二十年里进行了大量的研究,但要正确地表述和正式证明这一重要事实似乎非常困难。大多数超立方体网络容错模型只能描述非常罕见的极端情况,从而大大低估了超立方体网络的容错能力,而对于更现实的容错模型,分析变得更加复杂。我们开发了新的技术来分析一个现实的容错模型,并推导出超立方体网络容错概率的下界。研究结果具有理论意义和实践意义。理论上,我们的方法为正式证明网络连接概率的下界提供了非常通用和强大的技术,而实际上,我们的结果为制造商提供了正式证明和精确给出的节点故障概率上界,以实现所需的网络连接概率。我们的技术对于分析路由算法的性能也很有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A system for monitoring and management of computational grids Distributed game-tree search using transposition table driven work scheduling Performance comparison of location areas and reporting centers under aggregate movement behavior mobility models Fault-tolerant routing in 2D tori or meshes using limited-global-safety information Partitioning unstructured meshes for homogeneous and heterogeneous parallel computing environments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1