High-level test generation for processing elements in many-core systems

S. Oyeniran, R. Ubar, Siavoosh Payandeh Azad, J. Raik
{"title":"High-level test generation for processing elements in many-core systems","authors":"S. Oyeniran, R. Ubar, Siavoosh Payandeh Azad, J. Raik","doi":"10.1109/ReCoSoC.2017.8016156","DOIUrl":null,"url":null,"abstract":"The advent of many-core system-on-chips (SoC) will involve new scalable hardware/software mechanisms that can efficiently utilize the abundance of interconnected processing elements found in these SoCs. These trends will have a great impact on the strategies for testing the systems and improving their reliability by exploiting system's re-configurability to achieve graceful degradation of system's performance. We propose a strategy of Software-Based Self-Test (SBST) to be used for testing of processing elements in many-core systems with the goal to increase fault coverage and structuring the test routines in a way which makes test-data delivery in many-core systems more efficient. A new high-level fault model is introduced, which covers a broad class of gate-level Stuck-at-Faults (SAF), conditional SAF, and bridging faults of any multiplicity in processor control paths. Two algorithms for high-level simulation-based test generation for the control path and a bit-wise pseudo-exhaustive test approach for data path are proposed. No implementation details are needed for test data generation. A novel method for proving the redundancy of high-level functional faults is presented, which allows for precise evaluation of fault coverage.","PeriodicalId":393701,"journal":{"name":"2017 12th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Symposium on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReCoSoC.2017.8016156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The advent of many-core system-on-chips (SoC) will involve new scalable hardware/software mechanisms that can efficiently utilize the abundance of interconnected processing elements found in these SoCs. These trends will have a great impact on the strategies for testing the systems and improving their reliability by exploiting system's re-configurability to achieve graceful degradation of system's performance. We propose a strategy of Software-Based Self-Test (SBST) to be used for testing of processing elements in many-core systems with the goal to increase fault coverage and structuring the test routines in a way which makes test-data delivery in many-core systems more efficient. A new high-level fault model is introduced, which covers a broad class of gate-level Stuck-at-Faults (SAF), conditional SAF, and bridging faults of any multiplicity in processor control paths. Two algorithms for high-level simulation-based test generation for the control path and a bit-wise pseudo-exhaustive test approach for data path are proposed. No implementation details are needed for test data generation. A novel method for proving the redundancy of high-level functional faults is presented, which allows for precise evaluation of fault coverage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核系统中处理元素的高级测试生成
多核片上系统(SoC)的出现将涉及新的可扩展硬件/软件机制,这些机制可以有效地利用这些SoC中发现的大量互连处理元件。这些趋势将对系统的测试策略和利用系统的可重构性来实现系统性能的优雅降级来提高系统的可靠性产生重大影响。本文提出了一种基于软件的自测试(SBST)策略,用于多核系统中处理元素的测试,目的是增加故障覆盖率,并构建测试例程,使测试数据在多核系统中更有效地传递。介绍了一种新的高级故障模型,它涵盖了广泛的门级故障卡滞(SAF)、条件故障卡滞(SAF)和处理器控制路径中任意多重的桥接故障。提出了两种基于高级仿真的控制路径测试生成算法和数据路径的逐位伪穷举测试方法。测试数据生成不需要实现细节。提出了一种证明高级功能故障冗余度的新方法,可以精确地评估故障覆盖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-level design using Intel FPGA OpenCL: A hyperspectral imaging spatial-spectral classifier Federated system-to-service authentication and authorization combining PUFs and tokens Design method for asymmetric 3D interconnect architectures with high level models Fault recovery and adaptation in time-triggered Networks-on-Chips for mixed-criticality systems Exploring the performance of partially reconfigurable point-to-point interconnects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1