Wave Forecast using Bidirectional GRU and GRU Method Case Study in Pangandaran, Indonesia

Azka Jauhary Thanthawy Sukanda, D. Adytia
{"title":"Wave Forecast using Bidirectional GRU and GRU Method Case Study in Pangandaran, Indonesia","authors":"Azka Jauhary Thanthawy Sukanda, D. Adytia","doi":"10.1109/ICoDSA55874.2022.9862832","DOIUrl":null,"url":null,"abstract":"Wave forecasting is needed to support marine activities, especially planning for ship navigation, maintenance, and offshore engineering construction. Especially in an open sea, forecasting waves can be challenging due to the stochastic nature of the waves. In this research, we use deep learning models to forecast significant wave height, i.e., the Gated Recurrent Unit (GRU) both unidirectional and bidirectional variants. As a case study, we use six-year time series wave data in Pangandaran, West Java, Indonesia. We use the historical wave data to forecast the next one, three, and seven days’ wave conditions. Results of prediction show that the GRU gives better results than the experiment’s Bidirectional GRU (BiGRU). To predict one day ahead, the GRU gives an RMSE value of 0.2184 and R2 value of 0.9863, whereas the BiGRU gives a prediction with an RMSE value of 0.2206 and R2 value of 0.9869.","PeriodicalId":339135,"journal":{"name":"2022 International Conference on Data Science and Its Applications (ICoDSA)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Data Science and Its Applications (ICoDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICoDSA55874.2022.9862832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Wave forecasting is needed to support marine activities, especially planning for ship navigation, maintenance, and offshore engineering construction. Especially in an open sea, forecasting waves can be challenging due to the stochastic nature of the waves. In this research, we use deep learning models to forecast significant wave height, i.e., the Gated Recurrent Unit (GRU) both unidirectional and bidirectional variants. As a case study, we use six-year time series wave data in Pangandaran, West Java, Indonesia. We use the historical wave data to forecast the next one, three, and seven days’ wave conditions. Results of prediction show that the GRU gives better results than the experiment’s Bidirectional GRU (BiGRU). To predict one day ahead, the GRU gives an RMSE value of 0.2184 and R2 value of 0.9863, whereas the BiGRU gives a prediction with an RMSE value of 0.2206 and R2 value of 0.9869.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双向GRU和GRU方法的波浪预报——以印度尼西亚Pangandaran地区为例
海浪预报是支持海洋活动,特别是规划船舶航行、维修和海洋工程建设所必需的。特别是在公海,由于海浪的随机性,预测海浪可能具有挑战性。在本研究中,我们使用深度学习模型来预测显著波高,即门控循环单元(GRU)单向和双向变量。作为一个案例研究,我们使用了印度尼西亚西爪哇邦干达兰的6年时间序列波浪数据。我们使用历史波浪数据来预测未来1天、3天和7天的波浪情况。预测结果表明,GRU比实验中的双向GRU (BiGRU)具有更好的预测效果。为了预测一天的未来,GRU给出的RMSE值为0.2184,R2值为0.9863,而BiGRU给出的RMSE值为0.2206,R2值为0.9869。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predictive Model of Student Academic Performance in Private Higher Education Institution (Case in Undergraduate Management Program) Electronic Nose and Neural Network Algorithm for Multiclass Classification of Meat Quality What Affects User Satisfaction of Payroll Information Systems? Feature Expansion with Word2Vec for Topic Classification with Gradient Boosted Decision Tree on Twitter Wave Forecast using Bidirectional GRU and GRU Method Case Study in Pangandaran, Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1