{"title":"Infections as Abstract Symbolic Finite Automata: Formal Model and Applications","authors":"M. Preda, Isabella Mastroeni","doi":"10.1109/SPRO.2015.18","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a methodology, based on machine learning, for building a symbolic finite state automata-based model of infected systems, that expresses the interaction between the malware and the environment by combining in the same model the code and the semantics of a system and allowing to tune both the system and the malware code observation. Moreover, we show that this methodology may have several applications in the context of malware detection.","PeriodicalId":338591,"journal":{"name":"2015 IEEE/ACM 1st International Workshop on Software Protection","volume":"144 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 1st International Workshop on Software Protection","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPRO.2015.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we propose a methodology, based on machine learning, for building a symbolic finite state automata-based model of infected systems, that expresses the interaction between the malware and the environment by combining in the same model the code and the semantics of a system and allowing to tune both the system and the malware code observation. Moreover, we show that this methodology may have several applications in the context of malware detection.