Deep Learning-based Object Searching and Reporting for Aerial Surveillance Systems

A. Jitaru, Cosmina-Elena Barbu, B. Ionescu
{"title":"Deep Learning-based Object Searching and Reporting for Aerial Surveillance Systems","authors":"A. Jitaru, Cosmina-Elena Barbu, B. Ionescu","doi":"10.1109/comm54429.2022.9817266","DOIUrl":null,"url":null,"abstract":"Multi-class aircraft recognition is important in aerial surveillance applications to make consistent proposals for decision makers. Motivated by the state-of-art object detection methods for aerial sensing images, we explored and achieved satisfactory results based on standard YOLO archi-tectures by providing an analysis of certain aerial scenarios, from chained to scattered or yin-yang pairs objects and model's performance comparison on a typical wild emergency situation. First, we tackle the scarcity of multi-class aircraft detection data by developing of a 50 cm GSD dataset. Then, applying different training strategies and using a series of good practices, we achieved a F1-score of 0.820 and a con-siderable mAP@50 of 0.809 for the more difficult detection class. Experiments have been conducted over a dataset from Google Earth platform. Thus, our final proposal for aerial surveillance systems contains the pre-trained YOLOv5×6 architecture with attention on performance maximization for multiple specific aerial scenarios, processing 50km2 in no more than 6 seconds.","PeriodicalId":118077,"journal":{"name":"2022 14th International Conference on Communications (COMM)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comm54429.2022.9817266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-class aircraft recognition is important in aerial surveillance applications to make consistent proposals for decision makers. Motivated by the state-of-art object detection methods for aerial sensing images, we explored and achieved satisfactory results based on standard YOLO archi-tectures by providing an analysis of certain aerial scenarios, from chained to scattered or yin-yang pairs objects and model's performance comparison on a typical wild emergency situation. First, we tackle the scarcity of multi-class aircraft detection data by developing of a 50 cm GSD dataset. Then, applying different training strategies and using a series of good practices, we achieved a F1-score of 0.820 and a con-siderable mAP@50 of 0.809 for the more difficult detection class. Experiments have been conducted over a dataset from Google Earth platform. Thus, our final proposal for aerial surveillance systems contains the pre-trained YOLOv5×6 architecture with attention on performance maximization for multiple specific aerial scenarios, processing 50km2 in no more than 6 seconds.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的空中监视系统目标搜索与报告
多类飞机识别在空中监视应用中具有重要意义,可以为决策者提供一致的建议。在当前航空遥感图像目标检测方法的推动下,我们在标准YOLO架构的基础上进行了探索,并取得了令人满意的结果。我们对特定的空中场景进行了分析,从链状到分散或阴阳对的目标,并在典型的野外紧急情况下对模型进行了性能比较。首先,我们通过开发一个50 cm GSD数据集来解决多类飞机检测数据的稀缺性问题。然后,应用不同的训练策略并使用一系列良好的实践,我们获得了f1得分0.820,对于更困难的检测类,我们获得了相当可观的mAP@50得分0.809。在谷歌地球平台的数据集上进行了实验。因此,我们对空中监视系统的最终建议包含预先训练的YOLOv5×6架构,关注多个特定空中场景的性能最大化,在不超过6秒的时间内处理50平方公里。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real- Time EEG Data Processing Using Independent Component Analysis (ICA) Combating Deforestation Using Different AGNES Approaches Performance Analysis of Transport Layer Congestion on 5G Systems Fuel Monitoring System based on IoT: Overview and Device Authentication Network Softwarization: Developments and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1