Reinforcement Learning based Autoscaling for Kafka-centric Microservices in Kubernetes

Josephine Eskaline Joyce, Shoney Sebastian
{"title":"Reinforcement Learning based Autoscaling for Kafka-centric Microservices in Kubernetes","authors":"Josephine Eskaline Joyce, Shoney Sebastian","doi":"10.1109/PhDEDITS56681.2022.9955300","DOIUrl":null,"url":null,"abstract":"Microservices and Kafka have become a perfect match for enabling the Event-driven Architecture and this encourages microservices integration with various opensource platforms in the world of Cloud Native applications. Kubernetes is an opensource container orchestration platform, that can enable high availability, and scalability for Kafkacentric microservices. Kubernetes supports diverse autoscaling mechanisms like Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler (VPA) and Cluster Autoscaler (CA). Among others, HPA automatically scales the number of pods based on the default Resource Metrics, which includes CPU and memory usage. With Prometheus integration, custom metrics for an application can be monitored. In a Kafkacentric microservices, processing time and speed depends on the number of messages published. There is a need for auto scaling policy which can be based on the number of messages processed. This paper proposes a new autoscaling policy, which scales Kafka-centric microservices deployed in an eventdriven deployment architecture, using a Reinforcement Learning model.","PeriodicalId":373652,"journal":{"name":"2022 IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PhDEDITS56681.2022.9955300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Microservices and Kafka have become a perfect match for enabling the Event-driven Architecture and this encourages microservices integration with various opensource platforms in the world of Cloud Native applications. Kubernetes is an opensource container orchestration platform, that can enable high availability, and scalability for Kafkacentric microservices. Kubernetes supports diverse autoscaling mechanisms like Horizontal Pod Autoscaler (HPA), Vertical Pod Autoscaler (VPA) and Cluster Autoscaler (CA). Among others, HPA automatically scales the number of pods based on the default Resource Metrics, which includes CPU and memory usage. With Prometheus integration, custom metrics for an application can be monitored. In a Kafkacentric microservices, processing time and speed depends on the number of messages published. There is a need for auto scaling policy which can be based on the number of messages processed. This paper proposes a new autoscaling policy, which scales Kafka-centric microservices deployed in an eventdriven deployment architecture, using a Reinforcement Learning model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于强化学习的Kubernetes中以kafka为中心的微服务的自动伸缩
微服务和Kafka已经成为事件驱动架构的完美搭配,这鼓励微服务与云原生应用世界中的各种开源平台集成。Kubernetes是一个开源的容器编排平台,它可以为以kafkacentre为中心的微服务提供高可用性和可扩展性。Kubernetes支持多种自动缩放机制,如水平Pod自动缩放器(HPA),垂直Pod自动缩放器(VPA)和集群自动缩放器(CA)。其中,HPA根据默认的Resource Metrics(包括CPU和内存使用情况)自动缩放pod的数量。使用Prometheus集成,可以监视应用程序的自定义指标。在以kafka为中心的微服务中,处理时间和速度取决于发布的消息数量。需要基于处理的消息数量的自动伸缩策略。本文提出了一种新的自动扩展策略,该策略使用强化学习模型扩展部署在事件驱动部署架构中的以kafka为中心的微服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Application of Radio Geometric Mean labeling in Encoding and Decoding Reinforcement Learning based Autoscaling for Kafka-centric Microservices in Kubernetes Radio mean labeled paths in Cryptography Key generation in Cryptography using graph labeling techniques Activity Recognition for Behavioral Activation in Depression with Artificial Intelligence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1