SFDS: A Self-Feedback Detection System for DNS Hijacking Based on Multi-Protocol Cross Validation

Caiyun Huang, Peng Zhang, Yong Sun, Yujia Zhu, Yang Liu
{"title":"SFDS: A Self-Feedback Detection System for DNS Hijacking Based on Multi-Protocol Cross Validation","authors":"Caiyun Huang, Peng Zhang, Yong Sun, Yujia Zhu, Yang Liu","doi":"10.1109/ICT.2019.8798832","DOIUrl":null,"url":null,"abstract":"With the rapid growth of the Internet, concerns about the security of Domain Name System (DNS) have become prominent. DNS Hijacking is a typical threat which manipulates DNS resource records (RRs) to make users obtain wrong website server IPs through Cache Poisoning or Man-in-the-middle attack. In this paper, we propose a Self-Feedback Detection System (SFDS) deployed at Local Area Network (LAN) Gateway to protect users from visiting the wrong websites. SFDS: (i)finds the incorrect (Domain, IP) tuples in real-time to provide a correct (Domain, IP) tuple list for users, (ii)utilizes a multi-protocol cross validation method to verify suspicious (Domain, IP) tuples, (iii) applies self-feedback mechanism to calculate the correctness probabilities of (Domain, IP) tuples iteratively. We show that in real circumstance for two weeks, SFDS can find almost 1300 correct (Domain, IP) tuples for one domain on average in one day. And SFDS is effective with accuracy approximately 100% by our experiments.","PeriodicalId":127412,"journal":{"name":"2019 26th International Conference on Telecommunications (ICT)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th International Conference on Telecommunications (ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICT.2019.8798832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

With the rapid growth of the Internet, concerns about the security of Domain Name System (DNS) have become prominent. DNS Hijacking is a typical threat which manipulates DNS resource records (RRs) to make users obtain wrong website server IPs through Cache Poisoning or Man-in-the-middle attack. In this paper, we propose a Self-Feedback Detection System (SFDS) deployed at Local Area Network (LAN) Gateway to protect users from visiting the wrong websites. SFDS: (i)finds the incorrect (Domain, IP) tuples in real-time to provide a correct (Domain, IP) tuple list for users, (ii)utilizes a multi-protocol cross validation method to verify suspicious (Domain, IP) tuples, (iii) applies self-feedback mechanism to calculate the correctness probabilities of (Domain, IP) tuples iteratively. We show that in real circumstance for two weeks, SFDS can find almost 1300 correct (Domain, IP) tuples for one domain on average in one day. And SFDS is effective with accuracy approximately 100% by our experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多协议交叉验证的DNS劫持自反馈检测系统
随着互联网的快速发展,人们对域名系统(DNS)安全性的担忧日益突出。DNS劫持是一种典型的威胁,通过缓存投毒或中间人攻击,操纵DNS资源记录,使用户获取错误的网站服务器ip。本文提出了一种部署在局域网(LAN)网关的自反馈检测系统(SFDS),以防止用户访问错误的网站。SFDS:(i)实时发现不正确的(Domain, IP)元组,为用户提供正确的(Domain, IP)元组列表;(ii)采用多协议交叉验证方法对可疑的(Domain, IP)元组进行验证;(iii)采用自反馈机制迭代计算(Domain, IP)元组的正确概率。我们表明,在两周的实际环境中,SFDS平均在一天内可以为一个域找到近1300个正确的(Domain, IP)元组。实验结果表明,SFDS的准确率接近100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dual-polarized Antennas Based Directional Modulation Scheme Sliding-Window Processing of Turbo Equalization for Partial Response Channels Feature fusion by using LBP, HOG, GIST descriptors and Canonical Correlation Analysis for face recognition Periodic Time Series Data Classification By Deep Neural Network SFDS: A Self-Feedback Detection System for DNS Hijacking Based on Multi-Protocol Cross Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1