Diagnosis of Cerebellar Ataxia Based on Gait Analysis Using Human Pose Estimation: A Deep Learning Approach

Hisham Khalil, Ahmed Mohamed Saad Emam Saad, U. Khairuddin
{"title":"Diagnosis of Cerebellar Ataxia Based on Gait Analysis Using Human Pose Estimation: A Deep Learning Approach","authors":"Hisham Khalil, Ahmed Mohamed Saad Emam Saad, U. Khairuddin","doi":"10.1109/IECBES54088.2022.10079396","DOIUrl":null,"url":null,"abstract":"Human gait analysis has been one of the primary procedures for diagnosis in modern healthcare applications for various diseases. Instead of using expensive wearable sensors on patients, this research aims to assist in gait analysis and classification for medical diagnoses using computer vision solely. A long short-term memory (LSTM) neural network based on MediaPipe Pose for video-based human gait analysis is proposed to assist in diagnosing patients with neurodegenerative diseases, particularly cerebellar ataxia. The kinematic parameters were extracted from the pose estimation model on captured gait videos before deriving the spatiotemporal parameters for quantitative gait analysis. Data augmentation is applied to increase dataset size, and five-fold cross-validation is performed to verify the suitability of the developed dataset for training deep neural networks. The selected LSTM model achieves a testing accuracy of 99.8% with very high precision and recall metrics for ataxic and normal gait classes. The proposed methodology can be applied in broader applications for remote rehabilitation and patient monitoring. Clinical Relevance-The developed system can assist physicians in diagnosing cerebellar ataxic patients and monitoring gait rehabilitation process remotely via camera vision.","PeriodicalId":146681,"journal":{"name":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECBES54088.2022.10079396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human gait analysis has been one of the primary procedures for diagnosis in modern healthcare applications for various diseases. Instead of using expensive wearable sensors on patients, this research aims to assist in gait analysis and classification for medical diagnoses using computer vision solely. A long short-term memory (LSTM) neural network based on MediaPipe Pose for video-based human gait analysis is proposed to assist in diagnosing patients with neurodegenerative diseases, particularly cerebellar ataxia. The kinematic parameters were extracted from the pose estimation model on captured gait videos before deriving the spatiotemporal parameters for quantitative gait analysis. Data augmentation is applied to increase dataset size, and five-fold cross-validation is performed to verify the suitability of the developed dataset for training deep neural networks. The selected LSTM model achieves a testing accuracy of 99.8% with very high precision and recall metrics for ataxic and normal gait classes. The proposed methodology can be applied in broader applications for remote rehabilitation and patient monitoring. Clinical Relevance-The developed system can assist physicians in diagnosing cerebellar ataxic patients and monitoring gait rehabilitation process remotely via camera vision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于步态分析的小脑共济失调诊断:一种基于人体姿态估计的深度学习方法
人体步态分析已成为现代医疗保健中各种疾病诊断的主要程序之一。这项研究的目的不是在病人身上使用昂贵的可穿戴传感器,而是仅仅利用计算机视觉来辅助步态分析和医学诊断分类。提出了一种基于mediappe Pose的长短期记忆(LSTM)神经网络,用于基于视频的人体步态分析,以帮助诊断神经退行性疾病,特别是小脑性共济失调患者。从步态视频的姿态估计模型中提取运动学参数,然后导出用于定量步态分析的时空参数。应用数据增强来增加数据集大小,并进行五次交叉验证来验证开发的数据集用于训练深度神经网络的适用性。所选择的LSTM模型对于共济失调和正常步态类别具有非常高的精度和召回指标,测试准确率达到99.8%。所提出的方法可以应用于远程康复和患者监测的更广泛应用。临床应用:该系统可以帮助医生诊断小脑性共济失调患者,并通过摄像头视觉远程监控步态康复过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Functional Connectivity Based Classification for Autism Spectrum Disorder Using Spearman’s Rank Correlation Vector-Quantized Zero-Delay Deep Autoencoders for the Compression of Electrical Stimulation Patterns of Cochlear Implants using STOI Depression Detection on Malay Dialects Using GPT-3 Mechanical Noise Affects Rambling and Trembling Trajectories During Quiet Standing Effect Of Shoe Cushioning Hardness to Running Biomechanics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1