Estimating high-resolution Red Sea surface temperature hotspots, using a low-rank semiparametric spatial model

A. Hazra, Raphael Huser
{"title":"Estimating high-resolution Red Sea surface temperature hotspots, using a low-rank semiparametric spatial model","authors":"A. Hazra, Raphael Huser","doi":"10.1214/20-aoas1418","DOIUrl":null,"url":null,"abstract":"In this work, we estimate extreme sea surface temperature (SST) hotspots, i.e., high threshold exceedance regions, for the Red Sea, a vital region of high biodiversity. We analyze high-resolution satellite-derived SST data comprising daily measurements at 16703 grid cells across the Red Sea over the period 1985--2015. We propose a semiparametric Bayesian spatial mixed-effects linear model with a flexible mean structure to capture spatially-varying trend and seasonality, while the residual spatial variability is modeled through a Dirichlet process mixture (DPM) of low-rank spatial Student-$t$ processes (LTPs). By specifying cluster-specific parameters for each LTP mixture component, the bulk of the SST residuals influence tail inference and hotspot estimation only moderately. Our proposed model has a nonstationary mean, covariance and tail dependence, and posterior inference can be drawn efficiently through Gibbs sampling. In our application, we show that the proposed method outperforms some natural parametric and semiparametric alternatives. Moreover, we show how hotspots can be identified and we estimate extreme SST hotspots for the whole Red Sea, projected for the year 2100. The estimated 95\\% credible region for joint high threshold exceedances include large areas covering major endangered coral reefs in the southern Red Sea.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"680 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-aoas1418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

In this work, we estimate extreme sea surface temperature (SST) hotspots, i.e., high threshold exceedance regions, for the Red Sea, a vital region of high biodiversity. We analyze high-resolution satellite-derived SST data comprising daily measurements at 16703 grid cells across the Red Sea over the period 1985--2015. We propose a semiparametric Bayesian spatial mixed-effects linear model with a flexible mean structure to capture spatially-varying trend and seasonality, while the residual spatial variability is modeled through a Dirichlet process mixture (DPM) of low-rank spatial Student-$t$ processes (LTPs). By specifying cluster-specific parameters for each LTP mixture component, the bulk of the SST residuals influence tail inference and hotspot estimation only moderately. Our proposed model has a nonstationary mean, covariance and tail dependence, and posterior inference can be drawn efficiently through Gibbs sampling. In our application, we show that the proposed method outperforms some natural parametric and semiparametric alternatives. Moreover, we show how hotspots can be identified and we estimate extreme SST hotspots for the whole Red Sea, projected for the year 2100. The estimated 95\% credible region for joint high threshold exceedances include large areas covering major endangered coral reefs in the southern Red Sea.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用低阶半参数空间模型估算高分辨率红海表面温度热点
在这项工作中,我们估计了极端海表温度(SST)热点,即高阈值超出区域,红海是一个重要的生物多样性高区域。我们分析了高分辨率卫星衍生的海温数据,包括1985年至2015年期间红海16703个网格单元的每日测量数据。我们提出了一个具有灵活平均结构的半参数贝叶斯空间混合效应线性模型来捕捉空间变化趋势和季节性,而剩余空间变异性通过低秩空间Student-$t$过程(LTPs)的Dirichlet过程混合(DPM)来建模。通过为每个LTP混合分量指定特定于群集的参数,大部分海温残差仅对尾部推断和热点估计产生适度影响。该模型具有非平稳均值、协方差和尾依赖性,通过Gibbs抽样可以有效地进行后验推理。在我们的应用中,我们证明了该方法优于一些自然参数和半参数替代方法。此外,我们展示了如何识别热点,并估计了整个红海的极端海温热点,预计到2100年。据估计,联合高阈值超标95%可信区域包括覆盖红海南部主要濒危珊瑚礁的大片区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data Bayesian classification for dating archaeological sites via projectile points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1