{"title":"Design optimization of MEMS using constrained multi-objective evolutionary algorithm","authors":"Wenji Li, Zhun Fan, Xinye Cai, Huibiao Lin, Shuxiang Xie, Sheng Wang","doi":"10.1145/2598394.2610010","DOIUrl":null,"url":null,"abstract":"MEMS layout optimization is a typical multi-objective constrained optimization problem. This paper proposes an improved MOEA called cMOEA/D to solve this problem. The cMOEA/D is based on MOEA/D but also uses the frequency of individual update of sub-problems to locate the promising sub-problems. By dynamically allocating computing resources to more promising sub-problems, we can effectively improve the performance of the algorithm to find more non-dominated solutions in MEMS layout optimization. In addition, we compared two mechanisms of constraint handling, Stochastic Ranking (SR) and Constraint-domination principle (CDP). The experimental results show that CDP works better than SR and the proposed algorithm outperforms the state-of-art algorithms such as NSGA-II and MOEA/D, in terms of convergence and diversity.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2610010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
MEMS layout optimization is a typical multi-objective constrained optimization problem. This paper proposes an improved MOEA called cMOEA/D to solve this problem. The cMOEA/D is based on MOEA/D but also uses the frequency of individual update of sub-problems to locate the promising sub-problems. By dynamically allocating computing resources to more promising sub-problems, we can effectively improve the performance of the algorithm to find more non-dominated solutions in MEMS layout optimization. In addition, we compared two mechanisms of constraint handling, Stochastic Ranking (SR) and Constraint-domination principle (CDP). The experimental results show that CDP works better than SR and the proposed algorithm outperforms the state-of-art algorithms such as NSGA-II and MOEA/D, in terms of convergence and diversity.