The approach to classifying multi-output datasets based on cluster validity index method

K. Huang, Shann-Bin Chang, Lieh-Dai Yang
{"title":"The approach to classifying multi-output datasets based on cluster validity index method","authors":"K. Huang, Shann-Bin Chang, Lieh-Dai Yang","doi":"10.1109/ICAWST.2017.8256519","DOIUrl":null,"url":null,"abstract":"A cluster validity index (CVI) classification method is applied to enhance the performance of existing Multiple-Attribute Decision Making (MADM) method. This paper proposed index-based method is called the FRM-index method which combined Fuzzy Set (FS), Rough Set (RS), and a cluster validity index function. The effectiveness of the proposed FRM-index method is evaluated by comparing the classification results obtained for the relating UCI datasets using a statistical approach. Overall, the results show that the proposed method not only provides a more reliable basis for the extraction of decisionmaking rules for multi-output datasets, but also fills out the uncertainty and facilitates an effective MADM built.","PeriodicalId":378618,"journal":{"name":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2017.8256519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A cluster validity index (CVI) classification method is applied to enhance the performance of existing Multiple-Attribute Decision Making (MADM) method. This paper proposed index-based method is called the FRM-index method which combined Fuzzy Set (FS), Rough Set (RS), and a cluster validity index function. The effectiveness of the proposed FRM-index method is evaluated by comparing the classification results obtained for the relating UCI datasets using a statistical approach. Overall, the results show that the proposed method not only provides a more reliable basis for the extraction of decisionmaking rules for multi-output datasets, but also fills out the uncertainty and facilitates an effective MADM built.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类有效性指标法的多输出数据集分类方法
采用聚类有效性指数(CVI)分类方法,提高了现有多属性决策方法的性能。本文提出了一种结合模糊集(FS)、粗糙集(RS)和聚类有效性指标函数的基于指标的方法,称为FRM-index方法。通过比较统计方法对相关UCI数据集的分类结果,评价了FRM-index方法的有效性。结果表明,该方法不仅为多输出数据集的决策规则提取提供了更可靠的依据,而且填补了不确定性,有利于构建有效的MADM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep convolutional neural network classifier for travel patterns using binary sensors Establishing the application of personal healthcare service system for cancer patients Disaster state information management gis system based on tiled diplay environment Keynote speech I: Big data, non-big data, and algorithms for recognizing the real world data Improving the performance of lossless reversible steganography via data sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1