Language-Facilitated Human-Robot Cooperation within a Human Cognitive Modeling Infrastructure: A Case in Space Exploration Task

Yan Fu, Shiqi Li, Kan Qiu, Xue Li, L. Chen, Jie Tan
{"title":"Language-Facilitated Human-Robot Cooperation within a Human Cognitive Modeling Infrastructure: A Case in Space Exploration Task","authors":"Yan Fu, Shiqi Li, Kan Qiu, Xue Li, L. Chen, Jie Tan","doi":"10.1109/ICHMS49158.2020.9209506","DOIUrl":null,"url":null,"abstract":"It is natural and efficient to use natural language for transferring knowledge from a human to a robot. The inconsistency of human-robot spatial cognitive style, the high frequency communication and low-cognition-level symbol matching control have greatly affected the operational efficiency in spatial-cognition-demanding tasks such as positioning and exploring. To fill the knowledge gap, this study applies ACT-R cognitive theory to establish a new way of knowledge representation and processing for the robots with a purpose to improve the flexibility of natural language facilitated humanrobot cooperation. This idea is specifically validated in the task of human-robot teaming space exploration.","PeriodicalId":132917,"journal":{"name":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","volume":"282 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Human-Machine Systems (ICHMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICHMS49158.2020.9209506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is natural and efficient to use natural language for transferring knowledge from a human to a robot. The inconsistency of human-robot spatial cognitive style, the high frequency communication and low-cognition-level symbol matching control have greatly affected the operational efficiency in spatial-cognition-demanding tasks such as positioning and exploring. To fill the knowledge gap, this study applies ACT-R cognitive theory to establish a new way of knowledge representation and processing for the robots with a purpose to improve the flexibility of natural language facilitated humanrobot cooperation. This idea is specifically validated in the task of human-robot teaming space exploration.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类认知建模基础结构中语言促进的人机合作:以太空探索任务为例
利用自然语言将人类的知识传递给机器人是一种自然而高效的方法。在定位、探索等空间认知要求较高的任务中,人机空间认知风格的不一致性、高频率的通信和低认知水平的符号匹配控制极大地影响了操作效率。为了填补这一知识空白,本研究运用ACT-R认知理论,为机器人建立一种新的知识表示和处理方式,以提高自然语言的灵活性,促进人-机器人合作。这个想法在人类与机器人合作的太空探索任务中得到了特别的验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finite Time Sliding Mode Control of Connected Vehicle Platoons Guaranteeing String Stability User detection of threats with different security measures Driver Hazard Response When Processing On-road and In-vehicle Messaging of Non-Safety-Related Information Towards trustworthiness and transparency in social human-robot interaction Collaborative Environmental Monitoring through Teams of Trusted IoT devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1