Leveraging latent growth models to better understand MIS theory: a primer

H. Kher, M. Serva, Spring Davidson, Ellen F. Monk
{"title":"Leveraging latent growth models to better understand MIS theory: a primer","authors":"H. Kher, M. Serva, Spring Davidson, Ellen F. Monk","doi":"10.1145/1542130.1542161","DOIUrl":null,"url":null,"abstract":"The purpose of this didactic study is to demonstrate how latent growth models (LGM) can be utilized to measure changes in student's computer self efficacy (CSE) over time. LGM is a special application of structural equation modeling (SEM), an analytic tool that is popular among MIS researchers. LGMs have been used to study longitudinal changes in observed and/or latent variables over time in several other fields such as psychology, sociology, and management. To promote its use within MIS research, this paper provides a primer on the application of LGM using CSE data gathered from freshmen enrolled in the introduction to MIS class. We illustrate unconditional and conditional LGMs, and highlight the types of research questions such models can address. We discuss issues related to data requirements, model identification, estimation methods, sample size requirements, and model fit assessment statistics for LGMs, and conclude by providing avenues of further longitudinal research in MIS that can benefit from the use of LGMs.","PeriodicalId":373151,"journal":{"name":"SIGMIS CPR '09","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGMIS CPR '09","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1542130.1542161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The purpose of this didactic study is to demonstrate how latent growth models (LGM) can be utilized to measure changes in student's computer self efficacy (CSE) over time. LGM is a special application of structural equation modeling (SEM), an analytic tool that is popular among MIS researchers. LGMs have been used to study longitudinal changes in observed and/or latent variables over time in several other fields such as psychology, sociology, and management. To promote its use within MIS research, this paper provides a primer on the application of LGM using CSE data gathered from freshmen enrolled in the introduction to MIS class. We illustrate unconditional and conditional LGMs, and highlight the types of research questions such models can address. We discuss issues related to data requirements, model identification, estimation methods, sample size requirements, and model fit assessment statistics for LGMs, and conclude by providing avenues of further longitudinal research in MIS that can benefit from the use of LGMs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用潜在增长模型更好地理解MIS理论:入门
本教学研究的目的是证明如何利用潜在增长模型(LGM)来测量学生计算机自我效能感(CSE)随时间的变化。LGM是结构方程模型(SEM)的一种特殊应用,是MIS研究人员普遍使用的一种分析工具。在心理学、社会学和管理学等其他领域,lgm已被用于研究观察变量和/或潜在变量随时间的纵向变化。为了促进其在管理信息系统研究中的应用,本文使用从管理信息系统导论课程的大一新生收集的CSE数据提供了LGM应用的入门。我们举例说明了无条件和条件lgm,并强调了这些模型可以解决的研究问题的类型。我们讨论了与lgm的数据要求、模型识别、估计方法、样本量要求和模型拟合评估统计相关的问题,并通过提供在MIS中进一步纵向研究的途径来结束,这些途径可以从lgm的使用中受益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of an online intellectual community in a graduate educational setting Information systems at a liberal arts college: an interdisciplinary minor Leveraging latent growth models to better understand MIS theory: a primer The implementation and evaluation of KEEP SLS: an eportfolio system supporting social constructive learning Structural factors that affect global software development learning team performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1