Numerical optimization methods for financial time series GARCH(p, q) model, a comparative approach

A. Razouk, Rachid Ait daoud, Moulay El Mehdi Falloul
{"title":"Numerical optimization methods for financial time series GARCH(p, q) model, a comparative approach","authors":"A. Razouk, Rachid Ait daoud, Moulay El Mehdi Falloul","doi":"10.1109/ICOA55659.2022.9934755","DOIUrl":null,"url":null,"abstract":"Maximum likelihood estimation (MLE) is often used in econometric and other statistical models despite its computational considerations and because of its strong theoretical appeal. The non-linear optimization discipline provides feasible alternative methods for calculating MLE's, especially when the special structure may be exploited, for example in probabilistic choice models. This paper examines the estimation of the financial time series model parameters named GARCH(p, q) using four numerical optimization methods and gives numerical comparisons of these methods. Among the issues considered in this paper are the theoretical background of MLE. Also, methods of approximating the Hessian are presented. These include (DFP and BFGS) and statistical approximations (BHHH).","PeriodicalId":345017,"journal":{"name":"2022 8th International Conference on Optimization and Applications (ICOA)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Optimization and Applications (ICOA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOA55659.2022.9934755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maximum likelihood estimation (MLE) is often used in econometric and other statistical models despite its computational considerations and because of its strong theoretical appeal. The non-linear optimization discipline provides feasible alternative methods for calculating MLE's, especially when the special structure may be exploited, for example in probabilistic choice models. This paper examines the estimation of the financial time series model parameters named GARCH(p, q) using four numerical optimization methods and gives numerical comparisons of these methods. Among the issues considered in this paper are the theoretical background of MLE. Also, methods of approximating the Hessian are presented. These include (DFP and BFGS) and statistical approximations (BHHH).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数值优化方法对金融时间序列GARCH(p, q)模型进行比较
最大似然估计(MLE)经常用于计量经济和其他统计模型,尽管它的计算考虑和因为它强大的理论吸引力。非线性优化学科为计算最大似然值提供了可行的替代方法,特别是当特殊结构可能被利用时,例如在概率选择模型中。本文研究了四种数值优化方法对金融时间序列模型参数GARCH(p, q)的估计,并对这些方法进行了数值比较。本文考虑的问题之一是最大似然学习的理论背景。并给出了逼近黑森线的方法。这些包括(DFP和BFGS)和统计近似值(BHHH)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The importance of enterprise resource planning (ERP) in the optimisation of the small and medium enterprise's ressources in Morocco Nonsmooth Optimization for Synaptic Depression Dynamics 6G and V2X Communications: Applications, Features, and Challenges An Optimized Adaptive Learning Approach Based on Cuckoo Search Algorithm Waste solid management using Machine learning approch
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1