Guiding the Illumination Estimation Using the Attention Mechanism

Karlo Koščević, M. Subašić, S. Lončarić
{"title":"Guiding the Illumination Estimation Using the Attention Mechanism","authors":"Karlo Koščević, M. Subašić, S. Lončarić","doi":"10.1145/3379310.3379329","DOIUrl":null,"url":null,"abstract":"Deep learning methods have achieved a large step forward in many computer vision applications. With mechanisms such as attention, deep models can now guide themselves to focus on parts of an image that are more significant for a given task. In computational color constancy, the most important step is to estimate the illumination vector as accurately as possible. Since illumination estimation algorithms can be sensitive to noise, such as ambiguous regions in the image, the ability to have a mechanism to look for specific regions in an image could be helpful. In this paper, a convolutional neural network with an attention mechanism is proposed. The attention mechanism helps the network to focus on regions that contain more content and to avoid regions where ambiguous estimations may occur. In the experimental results, it is shown that the attention mechanism does help the network to obtain more accurate estimations and puts the focus of the network on the regions in an image where gradients are high. The network with the attention mechanism achieves up to 10% increase in accuracy compared to the same network architecture without the attention mechanism.","PeriodicalId":348326,"journal":{"name":"Proceedings of the 2020 2nd Asia Pacific Information Technology Conference","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 2nd Asia Pacific Information Technology Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379310.3379329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Deep learning methods have achieved a large step forward in many computer vision applications. With mechanisms such as attention, deep models can now guide themselves to focus on parts of an image that are more significant for a given task. In computational color constancy, the most important step is to estimate the illumination vector as accurately as possible. Since illumination estimation algorithms can be sensitive to noise, such as ambiguous regions in the image, the ability to have a mechanism to look for specific regions in an image could be helpful. In this paper, a convolutional neural network with an attention mechanism is proposed. The attention mechanism helps the network to focus on regions that contain more content and to avoid regions where ambiguous estimations may occur. In the experimental results, it is shown that the attention mechanism does help the network to obtain more accurate estimations and puts the focus of the network on the regions in an image where gradients are high. The network with the attention mechanism achieves up to 10% increase in accuracy compared to the same network architecture without the attention mechanism.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用注意机制指导照度估计
深度学习方法在许多计算机视觉应用中取得了很大的进步。有了注意力等机制,深度模型现在可以引导自己专注于图像中对给定任务更重要的部分。在色彩常数计算中,最重要的一步是尽可能准确地估计光照向量。由于照明估计算法可能对噪声敏感,例如图像中的模糊区域,因此具有在图像中查找特定区域的机制的能力可能会有所帮助。本文提出了一种具有注意机制的卷积神经网络。注意机制帮助网络集中在包含更多内容的区域,并避免可能出现模糊估计的区域。实验结果表明,注意机制确实有助于网络获得更准确的估计,并将网络的焦点放在图像中梯度高的区域上。与没有注意机制的相同网络架构相比,具有注意机制的网络的准确率提高了10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
D-Loc Apps: A Location Detection Application Based on Social Media Platform in the Event of A Flood Disaster Guiding the Illumination Estimation Using the Attention Mechanism BPTrends Redesign Methodology (BPRM) for the Development Disaster Management Prevention Information System SSS Appraising Personal Data Protection in Startup Companies in Financial Technology: A Case Study of ABC Corp
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1