PENERAPAN CLUSTERING PADA PENDUDUK YANG MEMPUNYAI KELUHAN KESEHATAN DENGAN DATAMINING K-MEANS

Nurul Rofiqo, Agus Perdana Windarto, Dedy Hartama
{"title":"PENERAPAN CLUSTERING PADA PENDUDUK YANG MEMPUNYAI KELUHAN KESEHATAN DENGAN DATAMINING K-MEANS","authors":"Nurul Rofiqo, Agus Perdana Windarto, Dedy Hartama","doi":"10.30865/KOMIK.V2I1.929","DOIUrl":null,"url":null,"abstract":"This study aims to utilize Clushtering Algorithm in grouping the number of people who have health complaints with the K-means algorithm in Indonesia. The source of this research data was collected based on the documents of the provincial population which had health complaints produced by the National Statistics Agency. The data used in this study are data from 2013-2017 consisting of 34 provinces. The method used in this research is K-means Algorithm. Data will be processed by clushtering in 3 clushter, namely clusther high health complaints, clusther moderate and low health complaints. Centroid data for high population level clusters 37.48, Centroid data for moderate population level clusters 27.08, and Centroid data for low population level clusters 14.89. So that obtained an assessment based on the population index that has health complaints with 7 provinces of high health complaints, namely Central Java, Yogyakarta, Bali, West Nusa Tenggara, East Nusa Tenggara, South Kalimantan, Gorontalo, 18 provinces of moderate health complaints, and 9 other provinces including low health complaints. This can be an input to the government to give more attention to residents in each region who have high health complaints through improving public health services so that the Indonesian population becomes healthier without health complaints.Keywords: data mining, health complaints, clustering, K-means, Indonesian residents","PeriodicalId":246167,"journal":{"name":"KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KOMIK (Konferensi Nasional Teknologi Informasi dan Komputer)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30865/KOMIK.V2I1.929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This study aims to utilize Clushtering Algorithm in grouping the number of people who have health complaints with the K-means algorithm in Indonesia. The source of this research data was collected based on the documents of the provincial population which had health complaints produced by the National Statistics Agency. The data used in this study are data from 2013-2017 consisting of 34 provinces. The method used in this research is K-means Algorithm. Data will be processed by clushtering in 3 clushter, namely clusther high health complaints, clusther moderate and low health complaints. Centroid data for high population level clusters 37.48, Centroid data for moderate population level clusters 27.08, and Centroid data for low population level clusters 14.89. So that obtained an assessment based on the population index that has health complaints with 7 provinces of high health complaints, namely Central Java, Yogyakarta, Bali, West Nusa Tenggara, East Nusa Tenggara, South Kalimantan, Gorontalo, 18 provinces of moderate health complaints, and 9 other provinces including low health complaints. This can be an input to the government to give more attention to residents in each region who have high health complaints through improving public health services so that the Indonesian population becomes healthier without health complaints.Keywords: data mining, health complaints, clustering, K-means, Indonesian residents
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对有健康问题的公民的全面应用
本研究旨在利用聚类算法对印度尼西亚的健康投诉人数进行K-means算法分组。这项研究数据的来源是根据国家统计局编制的关于有健康投诉的省级人口的文件收集的。本研究使用的数据为2013-2017年34个省份的数据。本研究使用的方法是K-means算法。将数据聚类成3个聚类,即高健康投诉聚类、中等健康投诉聚类和低健康投诉聚类。高人口水平集群的质心数据为37.48,中等人口水平集群的质心数据为27.08,低人口水平集群的质心数据为14.89。根据人口健康投诉指数对中爪哇省、日惹省、巴厘省、西努沙登加拉省、东努沙登加拉省、南加里曼丹省、哥伦塔洛省7个健康投诉高省、18个健康投诉中度省和9个健康投诉低省进行了评估。这可以作为对政府的一种投入,通过改善公共卫生服务,更多地关注每个地区对健康抱怨较多的居民,从而使印度尼西亚人口在没有健康抱怨的情况下变得更健康。关键词:数据挖掘,健康投诉,聚类,K-means,印度尼西亚居民
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PENERAPAN ALGORITMA K-MEDOIDS CLUSTERING UNTUK PENGELOMPOKKAN PENYEBARAN DIARE DI KOTA MEDAN (STUDI KASUS: KANTOR DINAS KESEHATAN KOTA MEDAN) SISTEM PENDUKUNG KEPUTUSAN DALAM PENENTUAN PENERIMA RASTRA (BERAS SEJAHTERA) MENGGUNAKAN METODE SIMPLE ADDITIVE WEIGHTING (STUDI KASUS DESA KARANG BANGUN) SISTEM PENDUKUNG KEPUTUSAN REKOMENDASI PEMILIHAN SMARTPHONE TERBAIK MENGGUNAKAN METODE TOPSIS SISTEM PENDUKUNG KEPUTUSAN DALAM MENENTUKAN PRIORITAS PENDISTRIBUSIAN DARAH MENERAPKAN METODE THE EXTENDED PROMETHEE II PADA KANTOR PALANG MERAH INDONESIA(PMI) PERANCANGAN APLIKASI MOBILE CATALOG MODEL RAMBUT DENGAN MENERAPKAN ALGORITMA CROCHEMORE PERRIN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1