Relative Pose Estimation for Multi-Camera Systems from Point Correspondences with Scale Ratio

Banglei Guan, Ji Zhao
{"title":"Relative Pose Estimation for Multi-Camera Systems from Point Correspondences with Scale Ratio","authors":"Banglei Guan, Ji Zhao","doi":"10.1145/3503161.3547788","DOIUrl":null,"url":null,"abstract":"The use of multi-camera systems is becoming more common in self-driving cars, micro aerial vehicles or augmented reality headsets. In order to perform 3D geometric tasks, the accuracy and efficiency of relative pose estimation algorithms are very important for the multi-camera systems, and is catching significant research attention these days. The point coordinates of point correspondences (PCs) obtained from feature matching strategies have been widely used for relative pose estimation. This paper exploits known scale ratios besides the point coordinates, which are also intrinsically provided by scale invariant feature detectors (e.g., SIFT). Two-view geometry of scale ratio associated with the extracted features is derived for multi-camera systems. Thanks to the constraints provided by the scale ratio across two views, the number of PCs needed for relative pose estimation is reduced from 6 to 3. Requiring fewer PCs makes RANSAC-like randomized robust estimation significantly faster. For different point correspondence layouts, four minimal solvers are proposed for typical two-camera rigs. Extensive experiments demonstrate that our solvers have better accuracy than the state-of-the-art ones and outperform them in terms of processing time.","PeriodicalId":412792,"journal":{"name":"Proceedings of the 30th ACM International Conference on Multimedia","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3503161.3547788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The use of multi-camera systems is becoming more common in self-driving cars, micro aerial vehicles or augmented reality headsets. In order to perform 3D geometric tasks, the accuracy and efficiency of relative pose estimation algorithms are very important for the multi-camera systems, and is catching significant research attention these days. The point coordinates of point correspondences (PCs) obtained from feature matching strategies have been widely used for relative pose estimation. This paper exploits known scale ratios besides the point coordinates, which are also intrinsically provided by scale invariant feature detectors (e.g., SIFT). Two-view geometry of scale ratio associated with the extracted features is derived for multi-camera systems. Thanks to the constraints provided by the scale ratio across two views, the number of PCs needed for relative pose estimation is reduced from 6 to 3. Requiring fewer PCs makes RANSAC-like randomized robust estimation significantly faster. For different point correspondence layouts, four minimal solvers are proposed for typical two-camera rigs. Extensive experiments demonstrate that our solvers have better accuracy than the state-of-the-art ones and outperform them in terms of processing time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于比例比点对应的多相机系统相对姿态估计
在自动驾驶汽车、微型飞行器或增强现实耳机中,多摄像头系统的使用越来越普遍。为了完成三维几何任务,相对姿态估计算法的精度和效率对多相机系统非常重要,是目前研究的热点。由特征匹配策略得到的点对应(pc)的点坐标被广泛用于相对姿态估计。本文除了利用点坐标之外,还利用了已知的尺度比,这些比例比本身也是由尺度不变特征检测器(例如SIFT)提供的。针对多相机系统,导出了与提取的特征相关联的比例比的双视图几何。由于两个视图之间的比例比例的限制,相对姿态估计所需的pc数量从6个减少到3个。需要更少的pc使得类似ransac的随机鲁棒估计明显更快。针对不同的点对应布局,给出了典型双摄像机平台的4个最小解。大量的实验表明,我们的求解器比最先进的求解器具有更好的精度,并且在处理时间方面优于它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Anti-Bottleneck Multi-Modal Graph Learning Network for Personalized Micro-video Recommendation Composite Photograph Harmonization with Complete Background Cues Domain-Specific Conditional Jigsaw Adaptation for Enhancing transferability and Discriminability Enabling Effective Low-Light Perception using Ubiquitous Low-Cost Visible-Light Cameras Restoration of Analog Videos Using Swin-UNet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1