Combining Parameter Space Search and Meta-learning for Data-Dependent Computational Agent Recommendation

O. Kazík, K. Pesková, M. Pilát, Roman Neruda
{"title":"Combining Parameter Space Search and Meta-learning for Data-Dependent Computational Agent Recommendation","authors":"O. Kazík, K. Pesková, M. Pilát, Roman Neruda","doi":"10.1109/ICMLA.2012.137","DOIUrl":null,"url":null,"abstract":"The goal of our data-mining multi-agent system is to facilitate data-mining experiments without the necessary knowledge of the most suitable machine learning method and its parameters to the data. In order to replace the experts knowledge, the meta-learning subsystems are proposed including the parameter-space search and method recommendation based on previous experiments. In this paper we show the results of the parameter-space search with several search algorithms - tabulation, random search, simmulated annealing, and genetic algorithm.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The goal of our data-mining multi-agent system is to facilitate data-mining experiments without the necessary knowledge of the most suitable machine learning method and its parameters to the data. In order to replace the experts knowledge, the meta-learning subsystems are proposed including the parameter-space search and method recommendation based on previous experiments. In this paper we show the results of the parameter-space search with several search algorithms - tabulation, random search, simmulated annealing, and genetic algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于参数空间搜索和元学习的数据依赖计算智能体推荐
我们的数据挖掘多智能体系统的目标是在不需要最合适的机器学习方法及其数据参数的必要知识的情况下促进数据挖掘实验。为了取代专家知识,在前人实验的基础上提出了参数空间搜索和方法推荐等元学习子系统。本文给出了用几种搜索算法——制表法、随机搜索法、模拟退火法和遗传算法进行参数空间搜索的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach Deep Structure Learning: Beyond Connectionist Approaches Using Twitter Content to Predict Psychopathy A Hybrid Approach to Coping with High Dimensionality and Class Imbalance for Software Defect Prediction O-linked Glycosylation Site Prediction Using Ensemble of Graphical Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1