Current Research Landscape of Machine Learning Algorithms in Online Identity Fraud Prediction and Detection

B. Conlin, U. Ruhi
{"title":"Current Research Landscape of Machine Learning Algorithms in Online Identity Fraud Prediction and Detection","authors":"B. Conlin, U. Ruhi","doi":"10.1109/ictmod52902.2021.9739308","DOIUrl":null,"url":null,"abstract":"Online fraud is an ever-growing problem that dates back to the beginning of e-commerce. An online fraudster can utilize many attack vectors and planes; however, identity fraud is one of the most common and detrimental to the victims. This paper will look at the current research landscape of the different machine learning algorithms and approaches used to help predict and detect online identity fraud. By adopting systematic review and meta-analysis protocols, this paper summarizes the types of machine learning algorithms used in online fraud detection and prevention, and highlights the reported effectiveness of these methods through performance measurement indicator analysis. Last, the researchers present the limitations and future research directions based on the results of this study","PeriodicalId":154817,"journal":{"name":"2021 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)","volume":"199 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Technology Management, Operations and Decisions (ICTMOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ictmod52902.2021.9739308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Online fraud is an ever-growing problem that dates back to the beginning of e-commerce. An online fraudster can utilize many attack vectors and planes; however, identity fraud is one of the most common and detrimental to the victims. This paper will look at the current research landscape of the different machine learning algorithms and approaches used to help predict and detect online identity fraud. By adopting systematic review and meta-analysis protocols, this paper summarizes the types of machine learning algorithms used in online fraud detection and prevention, and highlights the reported effectiveness of these methods through performance measurement indicator analysis. Last, the researchers present the limitations and future research directions based on the results of this study
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器学习算法在网络身份欺诈预测与检测中的研究现状
在线欺诈是一个日益严重的问题,可以追溯到电子商务的开始。网络欺诈者可以利用许多攻击向量和攻击平面;然而,身份欺诈是最常见和最有害的受害者之一。本文将介绍用于帮助预测和检测在线身份欺诈的不同机器学习算法和方法的当前研究概况。本文采用系统综述和元分析协议,总结了用于在线欺诈检测和预防的机器学习算法的类型,并通过性能测量指标分析强调了这些方法的有效性。最后,基于本研究的结果,提出了研究的局限性和未来的研究方向
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linking Technology Management Capabilities Perspective with the Management of Technology Platforms: a literature review and preliminary framework Prediction of perishable goods deliveries by GRU neural networks for reduction of logistics costs Which online channel approach suits best for brands' strategies? An affordance perspective CSR Strategies, Investment Efficiency and Sustainable Growth Current Research Landscape of Machine Learning Algorithms in Online Identity Fraud Prediction and Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1