AHP Under Uncertainty: A Modified Version of Cloud Delphi Hierarchical Analysis

A. A. Ahmad, Ghaida Rebdawi, Obaida Alsahli
{"title":"AHP Under Uncertainty: A Modified Version of Cloud Delphi Hierarchical Analysis","authors":"A. A. Ahmad, Ghaida Rebdawi, Obaida Alsahli","doi":"10.5121/CSIT.2019.90703","DOIUrl":null,"url":null,"abstract":"Cloud Delphi Hierarchical Analysis (CDHA) is an Analytic Hierarchical Process (AHP) based method for group decision making under uncertain environments. CDHA adopts appropriate tools for such environments, namely Delphi method, and Cloud model. Adopting such tools makes it a promising AHP variant in handling uncertainty. In spite of CDHA is a promising method, it is still suffering from two main defects. The first one lies in its definition of the consistency index, the second one lies in the technique used in building the pairwise comparisons Cloud models. This paper will discuss these defects, and propose a modified version. To overcome the defects mentioned above, the modified version will depend more on the context of the interval pairwise comparisons matrix while building the corresponding Cloud pairwise comparisons matrix. A simple case study that involves reproducing the relative area sizes of four provinces in Syria will be used to illustrate the modified version and to compare it with the original one.","PeriodicalId":383682,"journal":{"name":"8th International Conference on Soft Computing, Artificial Intelligence and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Soft Computing, Artificial Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2019.90703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cloud Delphi Hierarchical Analysis (CDHA) is an Analytic Hierarchical Process (AHP) based method for group decision making under uncertain environments. CDHA adopts appropriate tools for such environments, namely Delphi method, and Cloud model. Adopting such tools makes it a promising AHP variant in handling uncertainty. In spite of CDHA is a promising method, it is still suffering from two main defects. The first one lies in its definition of the consistency index, the second one lies in the technique used in building the pairwise comparisons Cloud models. This paper will discuss these defects, and propose a modified version. To overcome the defects mentioned above, the modified version will depend more on the context of the interval pairwise comparisons matrix while building the corresponding Cloud pairwise comparisons matrix. A simple case study that involves reproducing the relative area sizes of four provinces in Syria will be used to illustrate the modified version and to compare it with the original one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定条件下的AHP:一种改进的云德尔菲层次分析法
云德尔菲层次分析法(CDHA)是一种基于层次分析法(AHP)的不确定环境下群体决策方法。CDHA采用了适合这种环境的工具,即Delphi法和Cloud模型。采用这样的工具使其成为处理不确定性的AHP变体。尽管CDHA是一种很有前途的方法,但它仍然存在两个主要缺陷。第一个问题在于一致性指数的定义,第二个问题在于构建两两比较云模型所使用的技术。本文将讨论这些缺陷,并提出一个修改版本。为了克服上述缺陷,修改后的版本在构建相应的Cloud两两比较矩阵时将更多地依赖于区间两两比较矩阵的上下文。一个简单的案例研究涉及到叙利亚四个省的相对面积大小,将用于说明修改后的版本,并将其与原始版本进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HMM-Based Dari Named Entity Recognition for Information Extraction An Approach to Tracking Problem for Linear Control System Via Invariant Ellipsoids Method A Comparative Mention-Pair Models for Coreference Resolution in DARI Language for Information Extraction A Machine Learning Algorithm in Automated Text Categorization of Legacy Archives Vulnerability Analysis of IP Cameras Using ARP Poisoning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1