A Modularity Maximization Algorithm for Community Detection in Social Networks with Low Time Complexity

Mohsen Arab, M. Afsharchi
{"title":"A Modularity Maximization Algorithm for Community Detection in Social Networks with Low Time Complexity","authors":"Mohsen Arab, M. Afsharchi","doi":"10.1109/WI-IAT.2012.97","DOIUrl":null,"url":null,"abstract":"Graph vertices are often divided into groups or communities with dense connections within communities and sparse connections between communities. Community detection has recently attracted considerable attention in the field of data mining and social network analysis. Existing community detection methods require too much space and are very time consuming for moderate-to-large networks, whereas large-scale networks have become ubiquitous in real world. We proposed a method that can find communities of a graph with good time and space complexity and good accuracy as well.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Graph vertices are often divided into groups or communities with dense connections within communities and sparse connections between communities. Community detection has recently attracted considerable attention in the field of data mining and social network analysis. Existing community detection methods require too much space and are very time consuming for moderate-to-large networks, whereas large-scale networks have become ubiquitous in real world. We proposed a method that can find communities of a graph with good time and space complexity and good accuracy as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种低时间复杂度社交网络社区检测的模块化最大化算法
图的顶点通常被划分为组或群落,群落内部连接密集,群落之间连接稀疏。社区检测近年来在数据挖掘和社会网络分析领域引起了广泛的关注。现有的社区检测方法对于中大型网络占用空间大,耗时长,而大规模网络在现实世界中已经无处不在。提出了一种具有良好的时间和空间复杂度和精度的图群查找方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conceptualization Effects on MEDLINE Documents Classification Using Rocchio Method Keyword Proximity Search over Large and Complex RDF Database Cognitive-Educational Constraints for Socially-Relevant MALL Technologies Mining Criminal Networks from Chat Log Inferring User Context from Spatio-Temporal Pattern Mining for Mobile Application Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1