{"title":"Recent Progress in Zeroth Order Optimization and Its Applications to Adversarial Robustness in Data Mining and Machine Learning","authors":"Pin-Yu Chen, Sijia Liu","doi":"10.1145/3292500.3332288","DOIUrl":null,"url":null,"abstract":"Zeroth-order (ZO) optimization is increasingly embraced for solving big data and machine learning problems when explicit expressions of the gradients are difficult or infeasible to obtain. It achieves gradient-free optimization by approximating the full gradient via efficient gradient estimators. Some recent important applications include: a) generation of prediction-evasive, black-box adversarial attacks on deep neural networks, b) online network management with limited computation capacity, c) parameter inference of black-box/complex systems, and d) bandit optimization in which a player receives partial feedback in terms of loss function values revealed by her adversary. This tutorial aims to provide a comprehensive introduction to recent advances in ZO optimization methods in both theory and applications. On the theory side, we will cover convergence rate and iteration complexity analysis of ZO algorithms and make comparisons to their first-order counterparts. On the application side, we will highlight one appealing application of ZO optimization to studying the robustness of deep neural networks - practical and efficient adversarial attacks that generate adversarial examples from a black-box machine learning model. We will also summarize potential research directions regarding ZO optimization, big data challenges and some open-ended data mining and machine learning problems.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3332288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Zeroth-order (ZO) optimization is increasingly embraced for solving big data and machine learning problems when explicit expressions of the gradients are difficult or infeasible to obtain. It achieves gradient-free optimization by approximating the full gradient via efficient gradient estimators. Some recent important applications include: a) generation of prediction-evasive, black-box adversarial attacks on deep neural networks, b) online network management with limited computation capacity, c) parameter inference of black-box/complex systems, and d) bandit optimization in which a player receives partial feedback in terms of loss function values revealed by her adversary. This tutorial aims to provide a comprehensive introduction to recent advances in ZO optimization methods in both theory and applications. On the theory side, we will cover convergence rate and iteration complexity analysis of ZO algorithms and make comparisons to their first-order counterparts. On the application side, we will highlight one appealing application of ZO optimization to studying the robustness of deep neural networks - practical and efficient adversarial attacks that generate adversarial examples from a black-box machine learning model. We will also summarize potential research directions regarding ZO optimization, big data challenges and some open-ended data mining and machine learning problems.