Classification of cardiac cohorts based on morphological and hemodynamic features derived from 4D PC-MRI data

Uli Niemann, Atrayee Neog, B. Behrendt, K. Lawonn, M. Gutberlet, M. Spiliopoulou, B. Preim, M. Meuschke
{"title":"Classification of cardiac cohorts based on morphological and hemodynamic features derived from 4D PC-MRI data","authors":"Uli Niemann, Atrayee Neog, B. Behrendt, K. Lawonn, M. Gutberlet, M. Spiliopoulou, B. Preim, M. Meuschke","doi":"10.1109/CBMS55023.2022.00081","DOIUrl":null,"url":null,"abstract":"An accurate assessment of the cardiovascular system and prediction of cardiovascular diseases (CVDs) are crucial. Cardiac blood flow data provide insights about patient-specific hemodynamics. However, there is a lack of machine learning approaches for a feature-based classification of heart-healthy people and patients with CVDs. In this paper, we investigate the potential of morphological and hemodynamic features extracted from measured blood flow data in the aorta to classify heart-healthy volunteers (HHV) and patients with bicuspid aortic valve (BAV). Furthermore, we determine features that distinguish male vs. female patients and elderly HHV vs. BAV patients. We propose a data analysis pipeline for cardiac status classification, encompassing feature selection, model training, and hyperparameter tuning. Our results suggest substantial differences in flow features of the aorta between HHV and BAV patients. The excellent performance of the classifiers separating between elderly HHV and BAV patients indicates that aging is not associated with pathological morphology and hemodynamics. Our models represent a first step towards automated diagnosis of CVS using interpretable machine learning models.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An accurate assessment of the cardiovascular system and prediction of cardiovascular diseases (CVDs) are crucial. Cardiac blood flow data provide insights about patient-specific hemodynamics. However, there is a lack of machine learning approaches for a feature-based classification of heart-healthy people and patients with CVDs. In this paper, we investigate the potential of morphological and hemodynamic features extracted from measured blood flow data in the aorta to classify heart-healthy volunteers (HHV) and patients with bicuspid aortic valve (BAV). Furthermore, we determine features that distinguish male vs. female patients and elderly HHV vs. BAV patients. We propose a data analysis pipeline for cardiac status classification, encompassing feature selection, model training, and hyperparameter tuning. Our results suggest substantial differences in flow features of the aorta between HHV and BAV patients. The excellent performance of the classifiers separating between elderly HHV and BAV patients indicates that aging is not associated with pathological morphology and hemodynamics. Our models represent a first step towards automated diagnosis of CVS using interpretable machine learning models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于4D PC-MRI数据的形态学和血流动力学特征的心脏队列分类
准确评估心血管系统和预测心血管疾病(cvd)至关重要。心脏血流数据提供了对患者特异性血流动力学的见解。然而,目前还缺乏机器学习方法来对心脏健康的人和心血管病患者进行基于特征的分类。在本文中,我们研究了从主动脉测量血流数据中提取的形态学和血流动力学特征对心脏健康志愿者(HHV)和双尖瓣主动脉瓣膜(BAV)患者进行分类的潜力。此外,我们确定了区分男性和女性患者以及老年HHV和BAV患者的特征。我们提出了一种用于心脏状态分类的数据分析管道,包括特征选择,模型训练和超参数调整。我们的研究结果表明,HHV和BAV患者的主动脉血流特征存在显著差异。老年HHV和BAV患者的分类器的优异表现表明,年龄与病理形态和血流动力学无关。我们的模型代表了使用可解释的机器学习模型自动诊断CVS的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1