Handling uncertainty through Bayesian inference for Species Distribution Modelling in the Amazon Basin region

Renato O. Miyaji, Pedro L. P. Corrêa
{"title":"Handling uncertainty through Bayesian inference for Species Distribution Modelling in the Amazon Basin region","authors":"Renato O. Miyaji, Pedro L. P. Corrêa","doi":"10.5753/eniac.2021.18243","DOIUrl":null,"url":null,"abstract":"Uma das ferramentas mais utilizadas para o monitoramento da biodiversidade é a modelagem de distribuição de espécies. Para a sua aplicação, é necessário possuir uma grande base de dados confiáveis a respeito da ocorrência de espécies. Entretanto, essa condição não é satisfeita quando existem poucos registros de ocorrência. Nesse contexto, podem ser aplicadas técnicas de tratamento de incertezas. Assim, este trabalho buscou utilizar a abordagem Bayesiana para permitir a modelagem de distribuição de espécies na região da Bacia Amazônica próxima a Manaus (AM), com base em dados coletados pelo projeto GoAmazon 2014/15. Os resultados foram comparados com os resultantes de técnicas clássicas, obtendo desempenhos semelhantes.","PeriodicalId":318676,"journal":{"name":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XVIII Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2021.18243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Uma das ferramentas mais utilizadas para o monitoramento da biodiversidade é a modelagem de distribuição de espécies. Para a sua aplicação, é necessário possuir uma grande base de dados confiáveis a respeito da ocorrência de espécies. Entretanto, essa condição não é satisfeita quando existem poucos registros de ocorrência. Nesse contexto, podem ser aplicadas técnicas de tratamento de incertezas. Assim, este trabalho buscou utilizar a abordagem Bayesiana para permitir a modelagem de distribuição de espécies na região da Bacia Amazônica próxima a Manaus (AM), com base em dados coletados pelo projeto GoAmazon 2014/15. Os resultados foram comparados com os resultantes de técnicas clássicas, obtendo desempenhos semelhantes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用贝叶斯推理处理亚马逊流域物种分布模型的不确定性
监测生物多样性最常用的工具之一是物种分布模型。对于它的应用,需要一个关于物种发生的大而可靠的数据库。然而,当发生记录很少时,这个条件就不满足了。在这种情况下,可以应用不确定性处理技术。因此,本研究试图基于GoAmazon 2014/15项目收集的数据,使用贝叶斯方法对玛瑙斯(AM)附近的亚马逊盆地地区的物种分布进行建模。结果与经典技术的结果进行了比较,得到了相似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance analysis of machine learning algorithms trained on biased data An iterated local search for the travelling salesman problem Comparative Analysis of Collaborative Filtering-Based Predictors of Scores in Surveys of a Large Company Uma Abordagem de Agrupamento Automático de Dados Baseada na Otimização por Busca em Grupo Memética Detection of weapon possession and fire in Public Safety surveillance cameras
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1