Adia Khalid, N. Javaid, Abdul Mateen, B. Khalid, Z. Khan, U. Qasim
{"title":"Demand Side Management Using Hybrid Bacterial Foraging and Genetic Algorithm Optimization Techniques","authors":"Adia Khalid, N. Javaid, Abdul Mateen, B. Khalid, Z. Khan, U. Qasim","doi":"10.1109/CISIS.2016.128","DOIUrl":null,"url":null,"abstract":"Today, energy is the most valuable resource, new methods and techniques are being discovered to fulfill the demand of energy. However, energy demand growth causes a serious energy crisis, especially when demand is comparatively high and creates the peak load. This problem can be handled by integrating Demand Side Management (DSM) with traditional Smart Grid (SG) through two way communication between utility and customers. The main objective of DSM is peak load reduction where SG targets cost minimization and user comfort maximization. In this study, our emphasis is on cost minimization and load management by shifting the load from peak hours toward the off peak hours. In this underlying study, we adapt hybridization of two optimization approaches, Bacterial Foraging (BFA) and Genetic Algorithm (GA). Simulation results verify that the adapted approach reduces the total cost and peak average ratio by shifting the load on off peak hours with very little difference between minimum and maximum 95% confidence interval.","PeriodicalId":249236,"journal":{"name":"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISIS.2016.128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
Today, energy is the most valuable resource, new methods and techniques are being discovered to fulfill the demand of energy. However, energy demand growth causes a serious energy crisis, especially when demand is comparatively high and creates the peak load. This problem can be handled by integrating Demand Side Management (DSM) with traditional Smart Grid (SG) through two way communication between utility and customers. The main objective of DSM is peak load reduction where SG targets cost minimization and user comfort maximization. In this study, our emphasis is on cost minimization and load management by shifting the load from peak hours toward the off peak hours. In this underlying study, we adapt hybridization of two optimization approaches, Bacterial Foraging (BFA) and Genetic Algorithm (GA). Simulation results verify that the adapted approach reduces the total cost and peak average ratio by shifting the load on off peak hours with very little difference between minimum and maximum 95% confidence interval.