Shagun Bajoria, M. Snoeij, V. Schaffer, Mikhail V. Ivanov, Sijia Wang, K. Makinwa
{"title":"A 36V voltage-to-current converter with dynamic element matching and auto-calibration for AC ripple reduction","authors":"Shagun Bajoria, M. Snoeij, V. Schaffer, Mikhail V. Ivanov, Sijia Wang, K. Makinwa","doi":"10.1109/ESSCIRC.2011.6044971","DOIUrl":null,"url":null,"abstract":"A 36V precision voltage-to-current converter for 0–24mA loops is presented. It utilizes dynamic element matching (DEM) and an auto-calibration technique to achieve low DC inaccuracy (0.2%) and low DEM ripple (0.007%). Measurement results show that the auto-calibration suppresses the DEM ripple by a factor of 14, thus eliminating the need for a bulky off-chip ripple-suppression filter. The prototype chip is implemented in a 0.35μm CMOS process occupying 0.84mm2. It has a quiescent current of 0.5mA and a rise time of 10.2μs for a 1mA–23mA output step.","PeriodicalId":239979,"journal":{"name":"2011 Proceedings of the ESSCIRC (ESSCIRC)","volume":"568 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2011.6044971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A 36V precision voltage-to-current converter for 0–24mA loops is presented. It utilizes dynamic element matching (DEM) and an auto-calibration technique to achieve low DC inaccuracy (0.2%) and low DEM ripple (0.007%). Measurement results show that the auto-calibration suppresses the DEM ripple by a factor of 14, thus eliminating the need for a bulky off-chip ripple-suppression filter. The prototype chip is implemented in a 0.35μm CMOS process occupying 0.84mm2. It has a quiescent current of 0.5mA and a rise time of 10.2μs for a 1mA–23mA output step.