{"title":"Effects of Liquid Viscosity on Laser-Induced Shock Dynamics","authors":"Hiroki Kurahara, K. Ando","doi":"10.1115/ajkfluids2019-5151","DOIUrl":null,"url":null,"abstract":"\n We experimentally study the effects of viscosity on laser-induced shockwave in glycerol-water solution. A shockwave is generated through rapid expansion of plasma, which is induced by focusing a 6 ns pulse laser (532 nm) of energy fixed at 1.66 ± 0.22 mJ into 80, 90, 100 wt% glycerol-water solution. The shockwave propagation is recorded by an ultra-high-speed camera taken at 100 Mfps together with a pulse laser stroboscope. The photographs are used to determine the shock front position as a function of time, which allows for calculating the shock pressure according to the stiffened-gas type Rankine-Hugoniot relation. It turns out that the initial plasma pressure is reduced by having higher glycerol concentration (i.e., higher viscosity); therefore, wave steepening effect is deemphasized, resulting in a smaller decay rate.","PeriodicalId":322380,"journal":{"name":"Volume 5: Multiphase Flow","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Multiphase Flow","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We experimentally study the effects of viscosity on laser-induced shockwave in glycerol-water solution. A shockwave is generated through rapid expansion of plasma, which is induced by focusing a 6 ns pulse laser (532 nm) of energy fixed at 1.66 ± 0.22 mJ into 80, 90, 100 wt% glycerol-water solution. The shockwave propagation is recorded by an ultra-high-speed camera taken at 100 Mfps together with a pulse laser stroboscope. The photographs are used to determine the shock front position as a function of time, which allows for calculating the shock pressure according to the stiffened-gas type Rankine-Hugoniot relation. It turns out that the initial plasma pressure is reduced by having higher glycerol concentration (i.e., higher viscosity); therefore, wave steepening effect is deemphasized, resulting in a smaller decay rate.