Using orthogonal designswith feedback in wireless relay networks

J. M. Paredes, B. Khalaj, A. Gershman
{"title":"Using orthogonal designswith feedback in wireless relay networks","authors":"J. M. Paredes, B. Khalaj, A. Gershman","doi":"10.1109/SPAWC.2008.4641570","DOIUrl":null,"url":null,"abstract":"Recently, distributed space-time coding over half duplex wireless relay networks has been proposed to achieve higher diversity at the receiver. The use of orthogonal and quasi-orthogonal designs in such relay networks has the advantage of providing maximum diversity at a low decoding complexity. However, similar to their originating space-time codes, these designs are restricted in terms of rate and number of relays. In order to alleviate such restrictions, we propose an extension of group-coherent codes (GCCs) to wireless relay networks. As will be shown, with a very limited amount of feedback from receiver to the relays, it is possible to achieve a distributed code that is applicable for any number of relays without an additional rate loss. In addition, our approach offers the advantages of linear ML decoding complexity, maximum diversity, lower delay, and increased power gain. We further show that it is possible to improve the performance at the price of a higher feedback rate. Finally, the robustness of our scheme against node failures is verified.","PeriodicalId":197154,"journal":{"name":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","volume":"55 33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE 9th Workshop on Signal Processing Advances in Wireless Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2008.4641570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Recently, distributed space-time coding over half duplex wireless relay networks has been proposed to achieve higher diversity at the receiver. The use of orthogonal and quasi-orthogonal designs in such relay networks has the advantage of providing maximum diversity at a low decoding complexity. However, similar to their originating space-time codes, these designs are restricted in terms of rate and number of relays. In order to alleviate such restrictions, we propose an extension of group-coherent codes (GCCs) to wireless relay networks. As will be shown, with a very limited amount of feedback from receiver to the relays, it is possible to achieve a distributed code that is applicable for any number of relays without an additional rate loss. In addition, our approach offers the advantages of linear ML decoding complexity, maximum diversity, lower delay, and increased power gain. We further show that it is possible to improve the performance at the price of a higher feedback rate. Finally, the robustness of our scheme against node failures is verified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无线中继网络中带反馈的正交设计
近年来,为了在接收端实现更高的分集,提出了半双工无线中继网络的分布式空时编码。在这种中继网络中使用正交和准正交设计具有在低解码复杂度下提供最大分集的优点。然而,与它们最初的空时编码相似,这些设计在速率和中继数量方面受到限制。为了减轻这些限制,我们提出将群相干码(GCCs)扩展到无线中继网络。如图所示,从接收器到继电器的反馈量非常有限,有可能实现适用于任何数量的继电器的分布式代码,而不会造成额外的速率损失。此外,我们的方法还具有线性ML解码复杂性、最大多样性、更低延迟和更高功率增益的优点。我们进一步表明,以更高的反馈率为代价来提高性能是可能的。最后,验证了该方案对节点故障的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asymptotically optimal block-based transceivers with reduced redundancy Coding strategies for CDMA packet data networks with reduced rank multiuser detection, ARQ and Packet Combining Biorthogonal pulse shape modulation for IR-UWB systems over fading channels Blind estimation of nonlinear instantaneous channels in multiuser CDMA systems with PSK inputs Channel estimation in MIMO OFDM/OQAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1