CENTAL at TSAR-2022 Shared Task: How Does Context Impact BERT-Generated Substitutions for Lexical Simplification?

Rodrigo Wilkens, David Alfter, Rémi Cardon, Isabelle Gribomont, Adrien Bibal, Watrin Patrick, Marie-Catherine de Marneffe, Thomas François
{"title":"CENTAL at TSAR-2022 Shared Task: How Does Context Impact BERT-Generated Substitutions for Lexical Simplification?","authors":"Rodrigo Wilkens, David Alfter, Rémi Cardon, Isabelle Gribomont, Adrien Bibal, Watrin Patrick, Marie-Catherine de Marneffe, Thomas François","doi":"10.18653/v1/2022.tsar-1.25","DOIUrl":null,"url":null,"abstract":"Lexical simplification is the task of substituting a difficult word with a simpler equivalent for a target audience. This is currently commonly done by modeling lexical complexity on a continuous scale to identify simpler alternatives to difficult words. In the TSAR shared task, the organizers call for systems capable of generating substitutions in a zero-shot-task context, for English, Spanish and Portuguese. In this paper, we present the solution we (the {textsc{cental} team) proposed for the task. We explore the ability of BERT-like models to generate substitution words by masking the difficult word. To do so, we investigate various context enhancement strategies, that we combined into an ensemble method. We also explore different substitution ranking methods. We report on a post-submission analysis of the results and present our insights for potential improvements. The code for all our experiments is available at https://gitlab.com/Cental-FR/cental-tsar2022.","PeriodicalId":247582,"journal":{"name":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","volume":"28 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.tsar-1.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Lexical simplification is the task of substituting a difficult word with a simpler equivalent for a target audience. This is currently commonly done by modeling lexical complexity on a continuous scale to identify simpler alternatives to difficult words. In the TSAR shared task, the organizers call for systems capable of generating substitutions in a zero-shot-task context, for English, Spanish and Portuguese. In this paper, we present the solution we (the {textsc{cental} team) proposed for the task. We explore the ability of BERT-like models to generate substitution words by masking the difficult word. To do so, we investigate various context enhancement strategies, that we combined into an ensemble method. We also explore different substitution ranking methods. We report on a post-submission analysis of the results and present our insights for potential improvements. The code for all our experiments is available at https://gitlab.com/Cental-FR/cental-tsar2022.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TSAR-2022共享任务:上下文如何影响bert生成的词汇简化替代?
词汇简化是指为目标受众用较简单的对应词代替较难的词。目前,这通常是通过在连续尺度上对词汇复杂性进行建模来识别难词的简单替代词来完成的。在TSAR共享任务中,组织者要求系统能够在零射门任务上下文中生成替换,用于英语,西班牙语和葡萄牙语。在本文中,我们提出了我们({textsc{central}团队)为该任务提出的解决方案。我们探索了类bert模型通过屏蔽难词来生成替代词的能力。为此,我们研究了各种上下文增强策略,并将其组合成一个集成方法。我们还探讨了不同的替代排序方法。我们报告提交后的结果分析,并提出我们对潜在改进的见解。我们所有实验的代码都可以在https://gitlab.com/Cental-FR/cental-tsar2022上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parallel Corpus Filtering for Japanese Text Simplification teamPN at TSAR-2022 Shared Task: Lexical Simplification using Multi-Level and Modular Approach CENTAL at TSAR-2022 Shared Task: How Does Context Impact BERT-Generated Substitutions for Lexical Simplification? A Benchmark for Neural Readability Assessment of Texts in Spanish A Dataset of Word-Complexity Judgements from Deaf and Hard-of-Hearing Adults for Text Simplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1