{"title":"Fertility-based Source-Language-biased Inversion Transduction Grammar for Word Alignment","authors":"Chung-Chi Huang, Jason J. S. Chang","doi":"10.30019/IJCLCLP.200903.0001","DOIUrl":null,"url":null,"abstract":"We propose a version of Inversion Transduction Grammar (ITG) model with IBM-style notation of fertility to improve word-alignment performance. In our approach, binary context-free grammar rules of the source language, accompanied by orientation preferences of the target language and fertilities of words, are leveraged to construct a syntax-based statistical translation model. Our model, inherently possessing the characteristics of ITG restrictions and allowing for many consecutive words aligned to one and vice-versa, outperforms the Bracketing Transduction Grammar (BTG) model and GIZA++, a state-of-the-art word aligner, not only in alignment error rate (23% and 14% error reduction) but also in consistent phrase error rate (13% and 9% error reduction). Better performance in these two evaluation metrics suggests that, based on our word alignment result, more accurate phrase pairs may be acquired, leading to better machine translation quality.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30019/IJCLCLP.200903.0001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a version of Inversion Transduction Grammar (ITG) model with IBM-style notation of fertility to improve word-alignment performance. In our approach, binary context-free grammar rules of the source language, accompanied by orientation preferences of the target language and fertilities of words, are leveraged to construct a syntax-based statistical translation model. Our model, inherently possessing the characteristics of ITG restrictions and allowing for many consecutive words aligned to one and vice-versa, outperforms the Bracketing Transduction Grammar (BTG) model and GIZA++, a state-of-the-art word aligner, not only in alignment error rate (23% and 14% error reduction) but also in consistent phrase error rate (13% and 9% error reduction). Better performance in these two evaluation metrics suggests that, based on our word alignment result, more accurate phrase pairs may be acquired, leading to better machine translation quality.