Ludivine Maintier, Ehouarn Maguet, A. Clavé, E. Stindel, V. Burdin, G. Dardenne
{"title":"Tibial and femoral bones segmentation on CT-scans: a deep learning approach","authors":"Ludivine Maintier, Ehouarn Maguet, A. Clavé, E. Stindel, V. Burdin, G. Dardenne","doi":"10.29007/6jqc","DOIUrl":null,"url":null,"abstract":"Custom implants in Total Knee Arthroplasty (TKA) could improve prosthesis’ durability and patient’s comfort, but designing such personalized implants requires a simplified and thus automatic workflow to be easily integrated in the clinical routine. A good knowledge of the shape of the patient's femur and tibia is necessary to design it, but segmentation is still today a key issue. We present here an automatic segmentation approach of the three joints of the lower limb: hip, knee and ankle, using convolutional neural networks (CNNs) on successive transverse views from CT images. Our three 2D CNNs are built on the U-net model, and their specialization each on one joint allowed us to achieve promising results presented here. This could be integrated in a TKA planning software allowing the automatic design of TKA custom implants.","PeriodicalId":385854,"journal":{"name":"EPiC Series in Health Sciences","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPiC Series in Health Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/6jqc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Custom implants in Total Knee Arthroplasty (TKA) could improve prosthesis’ durability and patient’s comfort, but designing such personalized implants requires a simplified and thus automatic workflow to be easily integrated in the clinical routine. A good knowledge of the shape of the patient's femur and tibia is necessary to design it, but segmentation is still today a key issue. We present here an automatic segmentation approach of the three joints of the lower limb: hip, knee and ankle, using convolutional neural networks (CNNs) on successive transverse views from CT images. Our three 2D CNNs are built on the U-net model, and their specialization each on one joint allowed us to achieve promising results presented here. This could be integrated in a TKA planning software allowing the automatic design of TKA custom implants.