{"title":"Active Graph Cuts","authors":"Olivier Juan, Yuri Boykov","doi":"10.1109/CVPR.2006.47","DOIUrl":null,"url":null,"abstract":"This paper adds a number of novel concepts into global s/t cut methods improving their efficiency and making them relevant for a wider class of applications in vision where algorithms should ideally run in real-time. Our new Active Cuts (AC) method can effectively use a good approximate solution (initial cut) that is often available in dynamic, hierarchical, and multi-label optimization problems in vision. In many problems AC works faster than the state-of-the-art max-flow methods [2] even if initial cut is far from the optimal one. Moreover, empirical speed improves several folds when initial cut is spatially close to the optima. Before converging to a global minima, Active Cuts outputs a multitude of intermediate solutions (intermediate cuts) that, for example, can be used be accelerate iterative learning-based methods or to improve visual perception of graph cuts realtime performance when large volumetric data is segmented. Finally, it can also be combined with many previous methods for accelerating graph cuts.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"132","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 132

Abstract

This paper adds a number of novel concepts into global s/t cut methods improving their efficiency and making them relevant for a wider class of applications in vision where algorithms should ideally run in real-time. Our new Active Cuts (AC) method can effectively use a good approximate solution (initial cut) that is often available in dynamic, hierarchical, and multi-label optimization problems in vision. In many problems AC works faster than the state-of-the-art max-flow methods [2] even if initial cut is far from the optimal one. Moreover, empirical speed improves several folds when initial cut is spatially close to the optima. Before converging to a global minima, Active Cuts outputs a multitude of intermediate solutions (intermediate cuts) that, for example, can be used be accelerate iterative learning-based methods or to improve visual perception of graph cuts realtime performance when large volumetric data is segmented. Finally, it can also be combined with many previous methods for accelerating graph cuts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活动图切割
本文在全局s/t切割方法中增加了一些新概念,提高了它们的效率,并使它们与视觉中更广泛的应用相关,在这些应用中,算法应该理想地实时运行。我们的新主动切割(AC)方法可以有效地使用一个很好的近似解(初始切割),通常用于动态、分层和多标签视觉优化问题。在许多问题中,即使初始切割距离最优切割很远,交流算法也比最先进的最大流量方法更快。此外,当初始切割在空间上接近最优值时,经验速度提高了几倍。在收敛到全局最小值之前,Active Cuts输出大量的中间解(中间切割),例如,可以用于加速基于迭代学习的方法,或者在分割大体积数据时提高图形切割实时性能的视觉感知。最后,它还可以与许多先前的加速图切割方法相结合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1